![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difrp | Structured version Visualization version GIF version |
Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.) |
Ref | Expression |
---|---|
difrp | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℝ+)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | posdif 10723 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) | |
2 | resubcl 10547 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) | |
3 | 2 | ancoms 455 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) |
4 | elrp 12037 | . . . 4 ⊢ ((𝐵 − 𝐴) ∈ ℝ+ ↔ ((𝐵 − 𝐴) ∈ ℝ ∧ 0 < (𝐵 − 𝐴))) | |
5 | 4 | baib 525 | . . 3 ⊢ ((𝐵 − 𝐴) ∈ ℝ → ((𝐵 − 𝐴) ∈ ℝ+ ↔ 0 < (𝐵 − 𝐴))) |
6 | 3, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 − 𝐴) ∈ ℝ+ ↔ 0 < (𝐵 − 𝐴))) |
7 | 1, 6 | bitr4d 271 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℝ+)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∈ wcel 2145 class class class wbr 4786 (class class class)co 6793 ℝcr 10137 0cc0 10138 < clt 10276 − cmin 10468 ℝ+crp 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-ltxr 10281 df-sub 10470 df-neg 10471 df-rp 12036 |
This theorem is referenced by: xralrple 12241 lincmb01cmp 12522 iccf1o 12523 expmulnbnd 13203 fsumlt 14739 expcnv 14803 blssps 22449 blss 22450 icchmeo 22960 icopnfcnv 22961 icopnfhmeo 22962 ivthlem2 23440 ivthlem3 23441 c1liplem1 23979 lhop1lem 23996 ftc1lem4 24022 aaliou3lem7 24324 abelthlem7 24412 cosordlem 24498 logdivlti 24587 cxpaddlelem 24713 atantan 24871 birthdaylem3 24901 lgamgulmlem2 24977 lgamgulmlem3 24978 chtppilimlem2 25384 pntrlog2bndlem5 25491 pntlemd 25504 pntlemc 25505 ostth2lem1 25528 ttgcontlem1 25986 lt2addrd 29856 signsplypnf 30967 knoppndvlem20 32859 ftc1cnnclem 33815 cvgdvgrat 39038 sge0gtfsumgt 41177 hoidmvlelem3 41331 vonioolem1 41414 smfmullem1 41518 smfmullem2 41519 smfmullem3 41520 |
Copyright terms: Public domain | W3C validator |