![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difpreima | Structured version Visualization version GIF version |
Description: Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.) |
Ref | Expression |
---|---|
difpreima | ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∖ 𝐵)) = ((◡𝐹 “ 𝐴) ∖ (◡𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvcnv 6115 | . 2 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
2 | imadif 6132 | . 2 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (𝐴 ∖ 𝐵)) = ((◡𝐹 “ 𝐴) ∖ (◡𝐹 “ 𝐵))) | |
3 | 1, 2 | syl 17 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∖ 𝐵)) = ((◡𝐹 “ 𝐴) ∖ (◡𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∖ cdif 3710 ◡ccnv 5263 “ cima 5267 Fun wfun 6041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pr 5053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-br 4803 df-opab 4863 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-fun 6049 |
This theorem is referenced by: gsumpropd2lem 17472 fsumcvg4 30303 zrhunitpreima 30329 imambfm 30631 carsggect 30687 sibfof 30709 eulerpartlemmf 30744 itg2addnclem 33772 itg2addnclem2 33773 smfresal 41499 |
Copyright terms: Public domain | W3C validator |