Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmapsn Structured version   Visualization version   GIF version

Theorem difmapsn 39921
Description: Difference of two sets exponentiatiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
difmapsn.a (𝜑𝐴𝑉)
difmapsn.b (𝜑𝐵𝑊)
difmapsn.v (𝜑𝐶𝑍)
Assertion
Ref Expression
difmapsn (𝜑 → ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶})) = ((𝐴𝐵) ↑𝑚 {𝐶}))

Proof of Theorem difmapsn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eldifi 3875 . . . . . . . . . 10 (𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶})) → 𝑓 ∈ (𝐴𝑚 {𝐶}))
21adantl 473 . . . . . . . . 9 ((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) → 𝑓 ∈ (𝐴𝑚 {𝐶}))
3 elmapi 8047 . . . . . . . . . . . 12 (𝑓 ∈ (𝐴𝑚 {𝐶}) → 𝑓:{𝐶}⟶𝐴)
43adantl 473 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴𝑚 {𝐶})) → 𝑓:{𝐶}⟶𝐴)
5 difmapsn.v . . . . . . . . . . . . 13 (𝜑𝐶𝑍)
6 fsn2g 6569 . . . . . . . . . . . . 13 (𝐶𝑍 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
75, 6syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
87adantr 472 . . . . . . . . . . 11 ((𝜑𝑓 ∈ (𝐴𝑚 {𝐶})) → (𝑓:{𝐶}⟶𝐴 ↔ ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
94, 8mpbid 222 . . . . . . . . . 10 ((𝜑𝑓 ∈ (𝐴𝑚 {𝐶})) → ((𝑓𝐶) ∈ 𝐴𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
109simpld 477 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐴𝑚 {𝐶})) → (𝑓𝐶) ∈ 𝐴)
112, 10syldan 488 . . . . . . . 8 ((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) → (𝑓𝐶) ∈ 𝐴)
12 simpr 479 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓𝐶) ∈ 𝐵)
139simprd 482 . . . . . . . . . . . . . 14 ((𝜑𝑓 ∈ (𝐴𝑚 {𝐶})) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
142, 13syldan 488 . . . . . . . . . . . . 13 ((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
1514adantr 472 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})
1612, 15jca 555 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
17 fsn2g 6569 . . . . . . . . . . . . 13 (𝐶𝑍 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
185, 17syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
1918ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓:{𝐶}⟶𝐵 ↔ ((𝑓𝐶) ∈ 𝐵𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
2016, 19mpbird 247 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓:{𝐶}⟶𝐵)
21 difmapsn.b . . . . . . . . . . . 12 (𝜑𝐵𝑊)
2221ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝐵𝑊)
23 snex 5057 . . . . . . . . . . . 12 {𝐶} ∈ V
2423a1i 11 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → {𝐶} ∈ V)
2522, 24elmapd 8039 . . . . . . . . . 10 (((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → (𝑓 ∈ (𝐵𝑚 {𝐶}) ↔ 𝑓:{𝐶}⟶𝐵))
2620, 25mpbird 247 . . . . . . . . 9 (((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → 𝑓 ∈ (𝐵𝑚 {𝐶}))
27 eldifn 3876 . . . . . . . . . 10 (𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶})) → ¬ 𝑓 ∈ (𝐵𝑚 {𝐶}))
2827ad2antlr 765 . . . . . . . . 9 (((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) ∧ (𝑓𝐶) ∈ 𝐵) → ¬ 𝑓 ∈ (𝐵𝑚 {𝐶}))
2926, 28pm2.65da 601 . . . . . . . 8 ((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) → ¬ (𝑓𝐶) ∈ 𝐵)
3011, 29eldifd 3726 . . . . . . 7 ((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) → (𝑓𝐶) ∈ (𝐴𝐵))
3130, 14jca 555 . . . . . 6 ((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) → ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩}))
32 fsn2g 6569 . . . . . . . 8 (𝐶𝑍 → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
335, 32syl 17 . . . . . . 7 (𝜑 → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
3433adantr 472 . . . . . 6 ((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) → (𝑓:{𝐶}⟶(𝐴𝐵) ↔ ((𝑓𝐶) ∈ (𝐴𝐵) ∧ 𝑓 = {⟨𝐶, (𝑓𝐶)⟩})))
3531, 34mpbird 247 . . . . 5 ((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) → 𝑓:{𝐶}⟶(𝐴𝐵))
36 difmapsn.a . . . . . . . 8 (𝜑𝐴𝑉)
37 difssd 3881 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
3836, 37ssexd 4957 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ V)
3923a1i 11 . . . . . . 7 (𝜑 → {𝐶} ∈ V)
4038, 39elmapd 8039 . . . . . 6 (𝜑 → (𝑓 ∈ ((𝐴𝐵) ↑𝑚 {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴𝐵)))
4140adantr 472 . . . . 5 ((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) → (𝑓 ∈ ((𝐴𝐵) ↑𝑚 {𝐶}) ↔ 𝑓:{𝐶}⟶(𝐴𝐵)))
4235, 41mpbird 247 . . . 4 ((𝜑𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))) → 𝑓 ∈ ((𝐴𝐵) ↑𝑚 {𝐶}))
4342ralrimiva 3104 . . 3 (𝜑 → ∀𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))𝑓 ∈ ((𝐴𝐵) ↑𝑚 {𝐶}))
44 dfss3 3733 . . 3 (((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶})) ⊆ ((𝐴𝐵) ↑𝑚 {𝐶}) ↔ ∀𝑓 ∈ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶}))𝑓 ∈ ((𝐴𝐵) ↑𝑚 {𝐶}))
4543, 44sylibr 224 . 2 (𝜑 → ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶})) ⊆ ((𝐴𝐵) ↑𝑚 {𝐶}))
465snn0d 39775 . . 3 (𝜑 → {𝐶} ≠ ∅)
4736, 21, 39, 46difmap 39916 . 2 (𝜑 → ((𝐴𝐵) ↑𝑚 {𝐶}) ⊆ ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶})))
4845, 47eqssd 3761 1 (𝜑 → ((𝐴𝑚 {𝐶}) ∖ (𝐵𝑚 {𝐶})) = ((𝐴𝐵) ↑𝑚 {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  cdif 3712  wss 3715  {csn 4321  cop 4327  wf 6045  cfv 6049  (class class class)co 6814  𝑚 cmap 8025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-map 8027
This theorem is referenced by:  vonvolmbllem  41398  vonvolmbl  41399
  Copyright terms: Public domain W3C validator