![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difid | Structured version Visualization version GIF version |
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
difid | ⊢ (𝐴 ∖ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3765 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | ssdif0 4085 | . 2 ⊢ (𝐴 ⊆ 𝐴 ↔ (𝐴 ∖ 𝐴) = ∅) | |
3 | 1, 2 | mpbi 220 | 1 ⊢ (𝐴 ∖ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∖ cdif 3712 ⊆ wss 3715 ∅c0 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-dif 3718 df-in 3722 df-ss 3729 df-nul 4059 |
This theorem is referenced by: dif0 4093 difun2 4192 diftpsn3 4477 diftpsn3OLD 4478 symdifid 4751 difxp1 5717 difxp2 5718 2oconcl 7752 oev2 7772 fin1a2lem13 9426 ruclem13 15170 strle1 16175 efgi1 18334 frgpuptinv 18384 gsumdifsnd 18560 dprdsn 18635 ablfac1eulem 18671 fctop 21010 cctop 21012 topcld 21041 indiscld 21097 mretopd 21098 restcld 21178 conndisj 21421 csdfil 21899 ufinffr 21934 prdsxmslem2 22535 bcth3 23328 voliunlem3 23520 uhgr0vb 26166 uhgr0 26167 nbgr1vtx 26453 uvtx01vtx 26500 uvtxa01vtx0OLD 26502 cplgr1v 26536 frgr1v 27425 1vwmgr 27430 difres 29720 imadifxp 29721 difico 29854 0elsiga 30486 prsiga 30503 fiunelcarsg 30687 sibf0 30705 probun 30790 ballotlemfp1 30862 onint1 32754 poimirlem22 33744 poimirlem30 33752 zrdivrng 34065 ntrk0kbimka 38839 clsk3nimkb 38840 ntrclscls00 38866 ntrclskb 38869 ntrneicls11 38890 compne 39145 compneOLD 39146 fzdifsuc2 40023 dvmptfprodlem 40662 fouriercn 40952 prsal 41041 caragenuncllem 41232 carageniuncllem1 41241 caratheodorylem1 41246 gsumdifsndf 42654 |
Copyright terms: Public domain | W3C validator |