![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version |
Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | difeq2 3755 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∖ cdif 3604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-ral 2946 df-rab 2950 df-dif 3610 |
This theorem is referenced by: difeq12i 3759 dfun3 3898 dfin3 3899 dfin4 3900 invdif 3901 indif 3902 difundi 3912 difindi 3914 difdif2 3917 dif32 3924 difabs 3925 dfsymdif3 3926 notrab 3937 dif0 3983 unvdif 4075 difdifdir 4089 dfif3 4133 difpr 4366 iinvdif 4624 cnvin 5575 fndifnfp 6483 dif1o 7625 dfsdom2 8124 cda1dif 9036 m1bits 15209 clsval2 20902 mretopd 20944 cmpfi 21259 llycmpkgen2 21401 pserdvlem2 24227 nbgrssvwo2 26303 nbgrssvwo2OLD 26306 finsumvtxdg2ssteplem1 26497 clwwlknclwwlkdifsOLD 26947 frgrwopreglem3 27294 iundifdifd 29506 iundifdif 29507 difres 29539 sibfof 30530 eulerpartlemmf 30565 kur14lem2 31315 kur14lem6 31319 kur14lem7 31320 dfon4 32125 onint1 32573 bj-2upln1upl 33137 poimirlem8 33547 dfssr2 34389 diophren 37694 nonrel 38207 dssmapntrcls 38743 salincl 40861 meaiuninc 41016 carageniuncllem1 41056 |
Copyright terms: Public domain | W3C validator |