![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq1i | Structured version Visualization version GIF version |
Description: Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
difeq1i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | difeq1 3754 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∖ cdif 3604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-dif 3610 |
This theorem is referenced by: difeq12i 3759 dfin3 3899 indif1 3904 indifcom 3905 difun1 3920 notab 3930 notrab 3937 undifabs 4078 difprsn1 4362 difprsn2 4363 diftpsn3 4364 resdifcom 5450 resdmdfsn 5480 wfi 5751 orddif 5858 fresaun 6113 f12dfv 6569 f13dfv 6570 domunsncan 8101 phplem1 8180 elfiun 8377 axcclem 9317 dfn2 11343 mvdco 17911 pmtrdifellem2 17943 islinds2 20200 lindsind2 20206 restcld 21024 ufprim 21760 volun 23359 itgsplitioo 23649 uhgr0vb 26012 uhgr0 26013 uvtxupgrres 26359 cplgr3v 26387 ex-dif 27410 indifundif 29482 imadifxp 29540 aciunf1 29591 braew 30433 carsgclctunlem1 30507 carsggect 30508 coinflippvt 30674 ballotlemfval0 30685 signstfvcl 30778 frpoind 31865 frind 31868 onint1 32573 bj-2upln1upl 33137 bj-disj2r 33138 lindsenlbs 33534 poimirlem13 33552 poimirlem14 33553 poimirlem18 33557 poimirlem21 33560 poimirlem30 33569 itg2addnclem 33591 asindmre 33625 kelac2 37952 fourierdlem102 40743 fourierdlem114 40755 pwsal 40853 issald 40869 sge0fodjrnlem 40951 hoiprodp1 41123 lincext2 42569 |
Copyright terms: Public domain | W3C validator |