![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq12i | Structured version Visualization version GIF version |
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
difeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
difeq12i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | difeq1i 3867 | . 2 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
3 | difeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | difeq2i 3868 | . 2 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
5 | 2, 4 | eqtri 2782 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∖ cdif 3712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rab 3059 df-dif 3718 |
This theorem is referenced by: difrab 4044 preddif 5866 uniioombllem4 23574 clwwlknclwwlkdif 27121 gtiso 29808 mthmpps 31807 zrdivrng 34083 isdrngo1 34086 pwfi2f1o 38186 salexct2 41078 dfnelbr2 41817 |
Copyright terms: Public domain | W3C validator |