![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difdif2 | Structured version Visualization version GIF version |
Description: Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017.) |
Ref | Expression |
---|---|
difdif2 | ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difindi 4030 | . 2 ⊢ (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) | |
2 | invdif 4017 | . . . 4 ⊢ (𝐵 ∩ (V ∖ 𝐶)) = (𝐵 ∖ 𝐶) | |
3 | 2 | eqcomi 2780 | . . 3 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∩ (V ∖ 𝐶)) |
4 | 3 | difeq2i 3876 | . 2 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = (𝐴 ∖ (𝐵 ∩ (V ∖ 𝐶))) |
5 | dfin2 4009 | . . 3 ⊢ (𝐴 ∩ 𝐶) = (𝐴 ∖ (V ∖ 𝐶)) | |
6 | 5 | uneq2i 3915 | . 2 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ (V ∖ 𝐶))) |
7 | 1, 4, 6 | 3eqtr4i 2803 | 1 ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 Vcvv 3351 ∖ cdif 3720 ∪ cun 3721 ∩ cin 3722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 |
This theorem is referenced by: restmetu 22595 difelcarsg 30712 mblfinlem3 33781 mblfinlem4 33782 |
Copyright terms: Public domain | W3C validator |