![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dif20el | Structured version Visualization version GIF version |
Description: An ordinal greater than one is greater than zero. (Contributed by Mario Carneiro, 25-May-2015.) |
Ref | Expression |
---|---|
dif20el | ⊢ (𝐴 ∈ (On ∖ 2𝑜) → ∅ ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ondif2 7627 | . . 3 ⊢ (𝐴 ∈ (On ∖ 2𝑜) ↔ (𝐴 ∈ On ∧ 1𝑜 ∈ 𝐴)) | |
2 | 1 | simprbi 479 | . 2 ⊢ (𝐴 ∈ (On ∖ 2𝑜) → 1𝑜 ∈ 𝐴) |
3 | 0lt1o 7629 | . . 3 ⊢ ∅ ∈ 1𝑜 | |
4 | eldifi 3765 | . . . 4 ⊢ (𝐴 ∈ (On ∖ 2𝑜) → 𝐴 ∈ On) | |
5 | ontr1 5809 | . . . 4 ⊢ (𝐴 ∈ On → ((∅ ∈ 1𝑜 ∧ 1𝑜 ∈ 𝐴) → ∅ ∈ 𝐴)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐴 ∈ (On ∖ 2𝑜) → ((∅ ∈ 1𝑜 ∧ 1𝑜 ∈ 𝐴) → ∅ ∈ 𝐴)) |
7 | 3, 6 | mpani 712 | . 2 ⊢ (𝐴 ∈ (On ∖ 2𝑜) → (1𝑜 ∈ 𝐴 → ∅ ∈ 𝐴)) |
8 | 2, 7 | mpd 15 | 1 ⊢ (𝐴 ∈ (On ∖ 2𝑜) → ∅ ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2030 ∖ cdif 3604 ∅c0 3948 Oncon0 5761 1𝑜c1o 7598 2𝑜c2o 7599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 df-suc 5767 df-1o 7605 df-2o 7606 |
This theorem is referenced by: oeordi 7712 oeworde 7718 oelimcl 7725 oeeulem 7726 oeeui 7727 |
Copyright terms: Public domain | W3C validator |