Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicfval Structured version   Visualization version   GIF version

Theorem dicfval 37000
Description: The partial isomorphism C for a lattice 𝐾. (Contributed by NM, 15-Dec-2013.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicfval ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
Distinct variable groups:   𝐴,𝑟   𝑓,𝑔,𝑞,𝑟,𝑠,𝐾   ,𝑞   𝐴,𝑞   𝑇,𝑔   𝑓,𝑊,𝑔,𝑞,𝑟,𝑠
Allowed substitution hints:   𝐴(𝑓,𝑔,𝑠)   𝑃(𝑓,𝑔,𝑠,𝑟,𝑞)   𝑇(𝑓,𝑠,𝑟,𝑞)   𝐸(𝑓,𝑔,𝑠,𝑟,𝑞)   𝐻(𝑓,𝑔,𝑠,𝑟,𝑞)   𝐼(𝑓,𝑔,𝑠,𝑟,𝑞)   (𝑓,𝑔,𝑠,𝑟)   𝑉(𝑓,𝑔,𝑠,𝑟,𝑞)

Proof of Theorem dicfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dicval.i . . 3 𝐼 = ((DIsoC‘𝐾)‘𝑊)
2 dicval.l . . . . 5 = (le‘𝐾)
3 dicval.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 dicval.h . . . . 5 𝐻 = (LHyp‘𝐾)
52, 3, 4dicffval 36999 . . . 4 (𝐾𝑉 → (DIsoC‘𝐾) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})))
65fveq1d 6350 . . 3 (𝐾𝑉 → ((DIsoC‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))‘𝑊))
71, 6syl5eq 2820 . 2 (𝐾𝑉𝐼 = ((𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))‘𝑊))
8 breq2 4801 . . . . . 6 (𝑤 = 𝑊 → (𝑟 𝑤𝑟 𝑊))
98notbid 308 . . . . 5 (𝑤 = 𝑊 → (¬ 𝑟 𝑤 ↔ ¬ 𝑟 𝑊))
109rabbidv 3343 . . . 4 (𝑤 = 𝑊 → {𝑟𝐴 ∣ ¬ 𝑟 𝑤} = {𝑟𝐴 ∣ ¬ 𝑟 𝑊})
11 fveq2 6348 . . . . . . . . . 10 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = ((LTrn‘𝐾)‘𝑊))
12 dicval.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
1311, 12syl6eqr 2826 . . . . . . . . 9 (𝑤 = 𝑊 → ((LTrn‘𝐾)‘𝑤) = 𝑇)
14 fveq2 6348 . . . . . . . . . . . 12 (𝑤 = 𝑊 → ((oc‘𝐾)‘𝑤) = ((oc‘𝐾)‘𝑊))
15 dicval.p . . . . . . . . . . . 12 𝑃 = ((oc‘𝐾)‘𝑊)
1614, 15syl6eqr 2826 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((oc‘𝐾)‘𝑤) = 𝑃)
1716fveq2d 6352 . . . . . . . . . 10 (𝑤 = 𝑊 → (𝑔‘((oc‘𝐾)‘𝑤)) = (𝑔𝑃))
1817eqeq1d 2776 . . . . . . . . 9 (𝑤 = 𝑊 → ((𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞 ↔ (𝑔𝑃) = 𝑞))
1913, 18riotaeqbidv 6776 . . . . . . . 8 (𝑤 = 𝑊 → (𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞) = (𝑔𝑇 (𝑔𝑃) = 𝑞))
2019fveq2d 6352 . . . . . . 7 (𝑤 = 𝑊 → (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)))
2120eqeq2d 2784 . . . . . 6 (𝑤 = 𝑊 → (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ↔ 𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞))))
22 fveq2 6348 . . . . . . . 8 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = ((TEndo‘𝐾)‘𝑊))
23 dicval.e . . . . . . . 8 𝐸 = ((TEndo‘𝐾)‘𝑊)
2422, 23syl6eqr 2826 . . . . . . 7 (𝑤 = 𝑊 → ((TEndo‘𝐾)‘𝑤) = 𝐸)
2524eleq2d 2839 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ∈ ((TEndo‘𝐾)‘𝑤) ↔ 𝑠𝐸))
2621, 25anbi12d 617 . . . . 5 (𝑤 = 𝑊 → ((𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤)) ↔ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)))
2726opabbidv 4863 . . . 4 (𝑤 = 𝑊 → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))} = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)})
2810, 27mpteq12dv 4880 . . 3 (𝑤 = 𝑊 → (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}) = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
29 eqid 2774 . . 3 (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))})) = (𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))
303fvexi 6360 . . . 4 𝐴 ∈ V
3130mptrabex 6651 . . 3 (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}) ∈ V
3228, 29, 31fvmpt 6441 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑔‘((oc‘𝐾)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑤))}))‘𝑊) = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
337, 32sylan9eq 2828 1 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑞 ∈ {𝑟𝐴 ∣ ¬ 𝑟 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑞)) ∧ 𝑠𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1634  wcel 2148  {crab 3068   class class class wbr 4797  {copab 4859  cmpt 4876  cfv 6042  crio 6772  lecple 16176  occoc 16177  Atomscatm 35087  LHypclh 35808  LTrncltrn 35925  TEndoctendo 36577  DIsoCcdic 36997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pr 5048
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-nul 4074  df-if 4236  df-sn 4327  df-pr 4329  df-op 4333  df-uni 4586  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-id 5171  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-dic 36998
This theorem is referenced by:  dicval  37001  dicfnN  37008
  Copyright terms: Public domain W3C validator