Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicfnN Structured version   Visualization version   GIF version

Theorem dicfnN 36992
 Description: Functionality and domain of the partial isomorphism C. (Contributed by NM, 8-Mar-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicfn.l = (le‘𝐾)
dicfn.a 𝐴 = (Atoms‘𝐾)
dicfn.h 𝐻 = (LHyp‘𝐾)
dicfn.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicfnN ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐾,𝑝   𝑊,𝑝
Allowed substitution hints:   𝐻(𝑝)   𝐼(𝑝)   𝑉(𝑝)

Proof of Theorem dicfnN
Dummy variables 𝑞 𝑓 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4807 . . . . . . 7 (𝑝 = 𝑞 → (𝑝 𝑊𝑞 𝑊))
21notbid 307 . . . . . 6 (𝑝 = 𝑞 → (¬ 𝑝 𝑊 ↔ ¬ 𝑞 𝑊))
32elrab 3504 . . . . 5 (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↔ (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
4 dicfn.l . . . . . . 7 = (le‘𝐾)
5 dicfn.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 dicfn.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
7 eqid 2760 . . . . . . 7 ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊)
8 eqid 2760 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
9 eqid 2760 . . . . . . 7 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
10 dicfn.i . . . . . . 7 𝐼 = ((DIsoC‘𝐾)‘𝑊)
114, 5, 6, 7, 8, 9, 10dicval 36985 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐼𝑞) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
12 fvex 6363 . . . . . 6 (𝐼𝑞) ∈ V
1311, 12syl6eqelr 2848 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V)
143, 13sylan2b 493 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊}) → {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V)
1514ralrimiva 3104 . . 3 ((𝐾𝑉𝑊𝐻) → ∀𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V)
16 eqid 2760 . . . 4 (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) = (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))})
1716fnmpt 6181 . . 3 (∀𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))} ∈ V → (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
1815, 17syl 17 . 2 ((𝐾𝑉𝑊𝐻) → (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
194, 5, 6, 7, 8, 9, 10dicfval 36984 . . 3 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}))
2019fneq1d 6142 . 2 ((𝐾𝑉𝑊𝐻) → (𝐼 Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↔ (𝑞 ∈ {𝑝𝐴 ∣ ¬ 𝑝 𝑊} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑢 ∈ ((LTrn‘𝐾)‘𝑊)(𝑢‘((oc‘𝐾)‘𝑊)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))}) Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊}))
2118, 20mpbird 247 1 ((𝐾𝑉𝑊𝐻) → 𝐼 Fn {𝑝𝐴 ∣ ¬ 𝑝 𝑊})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  {crab 3054  Vcvv 3340   class class class wbr 4804  {copab 4864   ↦ cmpt 4881   Fn wfn 6044  ‘cfv 6049  ℩crio 6774  lecple 16170  occoc 16171  Atomscatm 35071  LHypclh 35791  LTrncltrn 35908  TEndoctendo 36560  DIsoCcdic 36981 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-dic 36982 This theorem is referenced by:  dicdmN  36993
 Copyright terms: Public domain W3C validator