Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dicelvalN Structured version   Visualization version   GIF version

Theorem dicelvalN 36988
 Description: Membership in value of the partial isomorphism C for a lattice 𝐾. (Contributed by NM, 25-Feb-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dicval.l = (le‘𝐾)
dicval.a 𝐴 = (Atoms‘𝐾)
dicval.h 𝐻 = (LHyp‘𝐾)
dicval.p 𝑃 = ((oc‘𝐾)‘𝑊)
dicval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dicval.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dicval.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
Assertion
Ref Expression
dicelvalN (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ 𝐸))))
Distinct variable groups:   𝑔,𝐾   𝑇,𝑔   𝑔,𝑊   𝑄,𝑔
Allowed substitution hints:   𝐴(𝑔)   𝑃(𝑔)   𝐸(𝑔)   𝐻(𝑔)   𝐼(𝑔)   (𝑔)   𝑉(𝑔)   𝑌(𝑔)

Proof of Theorem dicelvalN
Dummy variables 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dicval.l . . . 4 = (le‘𝐾)
2 dicval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 dicval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 dicval.p . . . 4 𝑃 = ((oc‘𝐾)‘𝑊)
5 dicval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 dicval.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 dicval.i . . . 4 𝐼 = ((DIsoC‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dicval 36986 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)})
98eleq2d 2836 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ 𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)}))
10 vex 3354 . . . . . 6 𝑓 ∈ V
11 vex 3354 . . . . . 6 𝑠 ∈ V
1210, 11op1std 7329 . . . . 5 (𝑌 = ⟨𝑓, 𝑠⟩ → (1st𝑌) = 𝑓)
1310, 11op2ndd 7330 . . . . . 6 (𝑌 = ⟨𝑓, 𝑠⟩ → (2nd𝑌) = 𝑠)
1413fveq1d 6335 . . . . 5 (𝑌 = ⟨𝑓, 𝑠⟩ → ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)))
1512, 14eqeq12d 2786 . . . 4 (𝑌 = ⟨𝑓, 𝑠⟩ → ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ↔ 𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄))))
1613eleq1d 2835 . . . 4 (𝑌 = ⟨𝑓, 𝑠⟩ → ((2nd𝑌) ∈ 𝐸𝑠𝐸))
1715, 16anbi12d 616 . . 3 (𝑌 = ⟨𝑓, 𝑠⟩ → (((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ 𝐸) ↔ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)))
1817elopaba 5370 . 2 (𝑌 ∈ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ 𝑠𝐸)} ↔ (𝑌 ∈ (V × V) ∧ ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ 𝐸)))
199, 18syl6bb 276 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑌 ∈ (𝐼𝑄) ↔ (𝑌 ∈ (V × V) ∧ ((1st𝑌) = ((2nd𝑌)‘(𝑔𝑇 (𝑔𝑃) = 𝑄)) ∧ (2nd𝑌) ∈ 𝐸))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  Vcvv 3351  ⟨cop 4323   class class class wbr 4787  {copab 4847   × cxp 5248  ‘cfv 6030  ℩crio 6756  1st c1st 7317  2nd c2nd 7318  lecple 16156  occoc 16157  Atomscatm 35072  LHypclh 35793  LTrncltrn 35910  TEndoctendo 36562  DIsoCcdic 36982 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-1st 7319  df-2nd 7320  df-dic 36983 This theorem is referenced by:  dicelval2N  36992
 Copyright terms: Public domain W3C validator