![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dicelval3 | Structured version Visualization version GIF version |
Description: Member of the partial isomorphism C. (Contributed by NM, 26-Feb-2014.) |
Ref | Expression |
---|---|
dicval.l | ⊢ ≤ = (le‘𝐾) |
dicval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dicval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dicval.p | ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
dicval.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dicval.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dicval.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
dicval2.g | ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) |
Ref | Expression |
---|---|
dicelval3 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dicval.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | dicval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | dicval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dicval.p | . . . 4 ⊢ 𝑃 = ((oc‘𝐾)‘𝑊) | |
5 | dicval.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | dicval.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
7 | dicval.i | . . . 4 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
8 | dicval2.g | . . . 4 ⊢ 𝐺 = (℩𝑔 ∈ 𝑇 (𝑔‘𝑃) = 𝑄) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | dicval2 36785 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)}) |
10 | 9 | eleq2d 2716 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ 𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)})) |
11 | excom 2082 | . . . 4 ⊢ (∃𝑓∃𝑠(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑠∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) | |
12 | an12 855 | . . . . . . 7 ⊢ ((𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ (𝑓 = (𝑠‘𝐺) ∧ (𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸))) | |
13 | 12 | exbii 1814 | . . . . . 6 ⊢ (∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑓(𝑓 = (𝑠‘𝐺) ∧ (𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸))) |
14 | fvex 6239 | . . . . . . 7 ⊢ (𝑠‘𝐺) ∈ V | |
15 | opeq1 4433 | . . . . . . . . 9 ⊢ (𝑓 = (𝑠‘𝐺) → 〈𝑓, 𝑠〉 = 〈(𝑠‘𝐺), 𝑠〉) | |
16 | 15 | eqeq2d 2661 | . . . . . . . 8 ⊢ (𝑓 = (𝑠‘𝐺) → (𝑌 = 〈𝑓, 𝑠〉 ↔ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
17 | 16 | anbi1d 741 | . . . . . . 7 ⊢ (𝑓 = (𝑠‘𝐺) → ((𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸) ↔ (𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑠 ∈ 𝐸))) |
18 | 14, 17 | ceqsexv 3273 | . . . . . 6 ⊢ (∃𝑓(𝑓 = (𝑠‘𝐺) ∧ (𝑌 = 〈𝑓, 𝑠〉 ∧ 𝑠 ∈ 𝐸)) ↔ (𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑠 ∈ 𝐸)) |
19 | ancom 465 | . . . . . 6 ⊢ ((𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ∧ 𝑠 ∈ 𝐸) ↔ (𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) | |
20 | 13, 18, 19 | 3bitri 286 | . . . . 5 ⊢ (∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ (𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
21 | 20 | exbii 1814 | . . . 4 ⊢ (∃𝑠∃𝑓(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑠(𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
22 | 11, 21 | bitri 264 | . . 3 ⊢ (∃𝑓∃𝑠(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)) ↔ ∃𝑠(𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
23 | elopab 5012 | . . 3 ⊢ (𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)} ↔ ∃𝑓∃𝑠(𝑌 = 〈𝑓, 𝑠〉 ∧ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸))) | |
24 | df-rex 2947 | . . 3 ⊢ (∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉 ↔ ∃𝑠(𝑠 ∈ 𝐸 ∧ 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) | |
25 | 22, 23, 24 | 3bitr4i 292 | . 2 ⊢ (𝑌 ∈ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘𝐺) ∧ 𝑠 ∈ 𝐸)} ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉) |
26 | 10, 25 | syl6bb 276 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑌 ∈ (𝐼‘𝑄) ↔ ∃𝑠 ∈ 𝐸 𝑌 = 〈(𝑠‘𝐺), 𝑠〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ∃wrex 2942 〈cop 4216 class class class wbr 4685 {copab 4745 ‘cfv 5926 ℩crio 6650 lecple 15995 occoc 15996 Atomscatm 34868 LHypclh 35588 LTrncltrn 35705 TEndoctendo 36357 DIsoCcdic 36778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-dic 36779 |
This theorem is referenced by: cdlemn11pre 36816 dihord2pre 36831 |
Copyright terms: Public domain | W3C validator |