Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibvalrel Structured version   Visualization version   GIF version

Theorem dibvalrel 36923
Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014.)
Hypotheses
Ref Expression
dibcl.h 𝐻 = (LHyp‘𝐾)
dibcl.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibvalrel ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))

Proof of Theorem dibvalrel
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 relxp 5271 . . 3 Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})
2 dibcl.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 eqid 2748 . . . . . . . 8 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
4 dibcl.i . . . . . . . 8 𝐼 = ((DIsoB‘𝐾)‘𝑊)
52, 3, 4dibdiadm 36915 . . . . . . 7 ((𝐾𝑉𝑊𝐻) → dom 𝐼 = dom ((DIsoA‘𝐾)‘𝑊))
65eleq2d 2813 . . . . . 6 ((𝐾𝑉𝑊𝐻) → (𝑋 ∈ dom 𝐼𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)))
76biimpa 502 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊))
8 eqid 2748 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
9 eqid 2748 . . . . . 6 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
10 eqid 2748 . . . . . 6 ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = ( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))
118, 2, 9, 10, 3, 4dibval 36902 . . . . 5 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom ((DIsoA‘𝐾)‘𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))
127, 11syldan 488 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))}))
1312releqd 5348 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → (Rel (𝐼𝑋) ↔ Rel ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {( ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))})))
141, 13mpbiri 248 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐼) → Rel (𝐼𝑋))
15 rel0 5387 . . . 4 Rel ∅
16 ndmfv 6367 . . . . 5 𝑋 ∈ dom 𝐼 → (𝐼𝑋) = ∅)
1716releqd 5348 . . . 4 𝑋 ∈ dom 𝐼 → (Rel (𝐼𝑋) ↔ Rel ∅))
1815, 17mpbiri 248 . . 3 𝑋 ∈ dom 𝐼 → Rel (𝐼𝑋))
1918adantl 473 . 2 (((𝐾𝑉𝑊𝐻) ∧ ¬ 𝑋 ∈ dom 𝐼) → Rel (𝐼𝑋))
2014, 19pm2.61dan 867 1 ((𝐾𝑉𝑊𝐻) → Rel (𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1620  wcel 2127  c0 4046  {csn 4309  cmpt 4869   I cid 5161   × cxp 5252  dom cdm 5254  cres 5256  Rel wrel 5259  cfv 6037  Basecbs 16030  LHypclh 35742  LTrncltrn 35859  DIsoAcdia 36788  DIsoBcdib 36898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-dib 36899
This theorem is referenced by:  dibglbN  36926  dib2dim  37003  dih2dimbALTN  37005
  Copyright terms: Public domain W3C validator