![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibval3N | Structured version Visualization version GIF version |
Description: Value of the partial isomorphism B for a lattice 𝐾. (Contributed by NM, 24-Feb-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dibval3.b | ⊢ 𝐵 = (Base‘𝐾) |
dibval3.l | ⊢ ≤ = (le‘𝐾) |
dibval3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dibval3.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dibval3.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dibval3.o | ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
dibval3.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dibval3N | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ({𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibval3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | dibval3.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | dibval3.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | dibval3.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | dibval3.o | . . 3 ⊢ 0 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
6 | eqid 2760 | . . 3 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
7 | dibval3.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dibval2 36953 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 })) |
9 | dibval3.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
10 | 1, 2, 3, 4, 9, 6 | diaval 36841 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑋) = {𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋}) |
11 | 10 | xpeq1d 5295 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × { 0 }) = ({𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} × { 0 })) |
12 | 8, 11 | eqtrd 2794 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ({𝑓 ∈ 𝑇 ∣ (𝑅‘𝑓) ≤ 𝑋} × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {crab 3054 {csn 4321 class class class wbr 4804 ↦ cmpt 4881 I cid 5173 × cxp 5264 ↾ cres 5268 ‘cfv 6049 Basecbs 16079 lecple 16170 LHypclh 35791 LTrncltrn 35908 trLctrl 35966 DIsoAcdia 36837 DIsoBcdib 36947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-disoa 36838 df-dib 36948 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |