Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibord Structured version   Visualization version   GIF version

Theorem dibord 36267
Description: The isomorphism B for a lattice 𝐾 is order-preserving in the region under co-atom 𝑊. (Contributed by NM, 24-Feb-2014.)
Hypotheses
Ref Expression
dib11.b 𝐵 = (Base‘𝐾)
dib11.l = (le‘𝐾)
dib11.h 𝐻 = (LHyp‘𝐾)
dib11.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibord (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))

Proof of Theorem dibord
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dib11.b . . . . 5 𝐵 = (Base‘𝐾)
2 dib11.l . . . . 5 = (le‘𝐾)
3 dib11.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 eqid 2620 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
5 eqid 2620 . . . . 5 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
6 eqid 2620 . . . . 5 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dib11.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 36252 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
983adant3 1079 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
101, 2, 3, 4, 5, 6, 7dibval2 36252 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑌) = ((((DIsoA‘𝐾)‘𝑊)‘𝑌) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
11103adant2 1078 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑌) = ((((DIsoA‘𝐾)‘𝑊)‘𝑌) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
129, 11sseq12d 3626 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ⊆ ((((DIsoA‘𝐾)‘𝑊)‘𝑌) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})))
131, 2, 3, 7dibn0 36261 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
14133adant3 1079 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (𝐼𝑋) ≠ ∅)
159, 14eqnetrrd 2859 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ≠ ∅)
16 ssxpb 5556 . . 3 (((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ≠ ∅ → (((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ⊆ ((((DIsoA‘𝐾)‘𝑊)‘𝑌) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ↔ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ⊆ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})))
1715, 16syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ⊆ ((((DIsoA‘𝐾)‘𝑊)‘𝑌) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ↔ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ⊆ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})))
18 ssid 3616 . . . 4 {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ⊆ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}
1918biantru 526 . . 3 ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ↔ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ⊆ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
201, 2, 3, 6diaord 36155 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ↔ 𝑋 𝑌))
2119, 20syl5bbr 274 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → (((((DIsoA‘𝐾)‘𝑊)‘𝑋) ⊆ (((DIsoA‘𝐾)‘𝑊)‘𝑌) ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ⊆ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ↔ 𝑋 𝑌))
2212, 17, 213bitrd 294 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊) ∧ (𝑌𝐵𝑌 𝑊)) → ((𝐼𝑋) ⊆ (𝐼𝑌) ↔ 𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wss 3567  c0 3907  {csn 4168   class class class wbr 4644  cmpt 4720   I cid 5013   × cxp 5102  cres 5106  cfv 5876  Basecbs 15838  lecple 15929  HLchlt 34456  LHypclh 35089  LTrncltrn 35206  DIsoAcdia 36136  DIsoBcdib 36246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-riotaBAD 34058
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-1st 7153  df-2nd 7154  df-undef 7384  df-map 7844  df-preset 16909  df-poset 16927  df-plt 16939  df-lub 16955  df-glb 16956  df-join 16957  df-meet 16958  df-p0 17020  df-p1 17021  df-lat 17027  df-clat 17089  df-oposet 34282  df-ol 34284  df-oml 34285  df-covers 34372  df-ats 34373  df-atl 34404  df-cvlat 34428  df-hlat 34457  df-llines 34603  df-lplanes 34604  df-lvols 34605  df-lines 34606  df-psubsp 34608  df-pmap 34609  df-padd 34901  df-lhyp 35093  df-laut 35094  df-ldil 35209  df-ltrn 35210  df-trl 35265  df-disoa 36137  df-dib 36247
This theorem is referenced by:  dib11N  36268  cdlemn2a  36304  dihord1  36326  dihord3  36365  dihord5b  36367
  Copyright terms: Public domain W3C validator