Step | Hyp | Ref
| Expression |
1 | | dibintcl.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | dibintcl.i |
. . . . . . . 8
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
3 | 1, 2 | dibf11N 36970 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran
𝐼) |
4 | 3 | adantr 472 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝐼:dom 𝐼–1-1-onto→ran
𝐼) |
5 | | f1ofn 6300 |
. . . . . 6
⊢ (𝐼:dom 𝐼–1-1-onto→ran
𝐼 → 𝐼 Fn dom 𝐼) |
6 | 4, 5 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝐼 Fn dom 𝐼) |
7 | | cnvimass 5643 |
. . . . 5
⊢ (◡𝐼 “ 𝑆) ⊆ dom 𝐼 |
8 | | fnssres 6165 |
. . . . 5
⊢ ((𝐼 Fn dom 𝐼 ∧ (◡𝐼 “ 𝑆) ⊆ dom 𝐼) → (𝐼 ↾ (◡𝐼 “ 𝑆)) Fn (◡𝐼 “ 𝑆)) |
9 | 6, 7, 8 | sylancl 697 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼 ↾ (◡𝐼 “ 𝑆)) Fn (◡𝐼 “ 𝑆)) |
10 | | fniinfv 6420 |
. . . 4
⊢ ((𝐼 ↾ (◡𝐼 “ 𝑆)) Fn (◡𝐼 “ 𝑆) → ∩
𝑦 ∈ (◡𝐼 “ 𝑆)((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦) = ∩ ran (𝐼 ↾ (◡𝐼 “ 𝑆))) |
11 | 9, 10 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ 𝑦 ∈ (◡𝐼 “ 𝑆)((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦) = ∩ ran (𝐼 ↾ (◡𝐼 “ 𝑆))) |
12 | | df-ima 5279 |
. . . . 5
⊢ (𝐼 “ (◡𝐼 “ 𝑆)) = ran (𝐼 ↾ (◡𝐼 “ 𝑆)) |
13 | | f1ofo 6306 |
. . . . . . . 8
⊢ (𝐼:dom 𝐼–1-1-onto→ran
𝐼 → 𝐼:dom 𝐼–onto→ran 𝐼) |
14 | 3, 13 | syl 17 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–onto→ran 𝐼) |
15 | 14 | adantr 472 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝐼:dom 𝐼–onto→ran 𝐼) |
16 | | simprl 811 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ⊆ ran 𝐼) |
17 | | foimacnv 6316 |
. . . . . 6
⊢ ((𝐼:dom 𝐼–onto→ran 𝐼 ∧ 𝑆 ⊆ ran 𝐼) → (𝐼 “ (◡𝐼 “ 𝑆)) = 𝑆) |
18 | 15, 16, 17 | syl2anc 696 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼 “ (◡𝐼 “ 𝑆)) = 𝑆) |
19 | 12, 18 | syl5eqr 2808 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ran (𝐼 ↾ (◡𝐼 “ 𝑆)) = 𝑆) |
20 | 19 | inteqd 4632 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ ran (𝐼 ↾ (◡𝐼 “ 𝑆)) = ∩ 𝑆) |
21 | 11, 20 | eqtrd 2794 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ 𝑦 ∈ (◡𝐼 “ 𝑆)((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦) = ∩ 𝑆) |
22 | | simpl 474 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
23 | 7 | a1i 11 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (◡𝐼 “ 𝑆) ⊆ dom 𝐼) |
24 | | simprr 813 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝑆 ≠ ∅) |
25 | | n0 4074 |
. . . . . . 7
⊢ (𝑆 ≠ ∅ ↔
∃𝑦 𝑦 ∈ 𝑆) |
26 | 24, 25 | sylib 208 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∃𝑦 𝑦 ∈ 𝑆) |
27 | 16 | sselda 3744 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ ran 𝐼) |
28 | 3 | ad2antrr 764 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → 𝐼:dom 𝐼–1-1-onto→ran
𝐼) |
29 | 28, 5 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → 𝐼 Fn dom 𝐼) |
30 | | fvelrnb 6406 |
. . . . . . . . 9
⊢ (𝐼 Fn dom 𝐼 → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = 𝑦)) |
31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → (𝑦 ∈ ran 𝐼 ↔ ∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = 𝑦)) |
32 | 27, 31 | mpbid 222 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → ∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = 𝑦) |
33 | | f1ofun 6301 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼:dom 𝐼–1-1-onto→ran
𝐼 → Fun 𝐼) |
34 | 3, 33 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Fun 𝐼) |
35 | 34 | adantr 472 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → Fun 𝐼) |
36 | | fvimacnv 6496 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐼 ∧ 𝑥 ∈ dom 𝐼) → ((𝐼‘𝑥) ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐼 “ 𝑆))) |
37 | 35, 36 | sylan 489 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼‘𝑥) ∈ 𝑆 ↔ 𝑥 ∈ (◡𝐼 “ 𝑆))) |
38 | | ne0i 4064 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (◡𝐼 “ 𝑆) → (◡𝐼 “ 𝑆) ≠ ∅) |
39 | 37, 38 | syl6bi 243 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑥 ∈ dom 𝐼) → ((𝐼‘𝑥) ∈ 𝑆 → (◡𝐼 “ 𝑆) ≠ ∅)) |
40 | 39 | ex 449 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝑥 ∈ dom 𝐼 → ((𝐼‘𝑥) ∈ 𝑆 → (◡𝐼 “ 𝑆) ≠ ∅))) |
41 | | eleq1 2827 |
. . . . . . . . . . . . 13
⊢ ((𝐼‘𝑥) = 𝑦 → ((𝐼‘𝑥) ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) |
42 | 41 | biimprd 238 |
. . . . . . . . . . . 12
⊢ ((𝐼‘𝑥) = 𝑦 → (𝑦 ∈ 𝑆 → (𝐼‘𝑥) ∈ 𝑆)) |
43 | 42 | imim1d 82 |
. . . . . . . . . . 11
⊢ ((𝐼‘𝑥) = 𝑦 → (((𝐼‘𝑥) ∈ 𝑆 → (◡𝐼 “ 𝑆) ≠ ∅) → (𝑦 ∈ 𝑆 → (◡𝐼 “ 𝑆) ≠ ∅))) |
44 | 40, 43 | syl9 77 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ((𝐼‘𝑥) = 𝑦 → (𝑥 ∈ dom 𝐼 → (𝑦 ∈ 𝑆 → (◡𝐼 “ 𝑆) ≠ ∅)))) |
45 | 44 | com24 95 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝑦 ∈ 𝑆 → (𝑥 ∈ dom 𝐼 → ((𝐼‘𝑥) = 𝑦 → (◡𝐼 “ 𝑆) ≠ ∅)))) |
46 | 45 | imp 444 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → (𝑥 ∈ dom 𝐼 → ((𝐼‘𝑥) = 𝑦 → (◡𝐼 “ 𝑆) ≠ ∅))) |
47 | 46 | rexlimdv 3168 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → (∃𝑥 ∈ dom 𝐼(𝐼‘𝑥) = 𝑦 → (◡𝐼 “ 𝑆) ≠ ∅)) |
48 | 32, 47 | mpd 15 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ 𝑆) → (◡𝐼 “ 𝑆) ≠ ∅) |
49 | 26, 48 | exlimddv 2012 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (◡𝐼 “ 𝑆) ≠ ∅) |
50 | | eqid 2760 |
. . . . . 6
⊢
(glb‘𝐾) =
(glb‘𝐾) |
51 | 50, 1, 2 | dibglbN 36975 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((◡𝐼 “ 𝑆) ⊆ dom 𝐼 ∧ (◡𝐼 “ 𝑆) ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(◡𝐼 “ 𝑆))) = ∩
𝑦 ∈ (◡𝐼 “ 𝑆)(𝐼‘𝑦)) |
52 | 22, 23, 49, 51 | syl12anc 1475 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(◡𝐼 “ 𝑆))) = ∩
𝑦 ∈ (◡𝐼 “ 𝑆)(𝐼‘𝑦)) |
53 | | fvres 6369 |
. . . . 5
⊢ (𝑦 ∈ (◡𝐼 “ 𝑆) → ((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦) = (𝐼‘𝑦)) |
54 | 53 | iineq2i 4692 |
. . . 4
⊢ ∩ 𝑦 ∈ (◡𝐼 “ 𝑆)((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦) = ∩ 𝑦 ∈ (◡𝐼 “ 𝑆)(𝐼‘𝑦) |
55 | 52, 54 | syl6eqr 2812 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(◡𝐼 “ 𝑆))) = ∩
𝑦 ∈ (◡𝐼 “ 𝑆)((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦)) |
56 | | hlclat 35166 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
57 | 56 | ad2antrr 764 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → 𝐾 ∈ CLat) |
58 | | eqid 2760 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
59 | | eqid 2760 |
. . . . . . . . . 10
⊢
(le‘𝐾) =
(le‘𝐾) |
60 | 58, 59, 1, 2 | dibdmN 36966 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → dom 𝐼 = {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊}) |
61 | | ssrab2 3828 |
. . . . . . . . 9
⊢ {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊} ⊆ (Base‘𝐾) |
62 | 60, 61 | syl6eqss 3796 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → dom 𝐼 ⊆ (Base‘𝐾)) |
63 | 62 | adantr 472 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → dom 𝐼 ⊆ (Base‘𝐾)) |
64 | 7, 63 | syl5ss 3755 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (◡𝐼 “ 𝑆) ⊆ (Base‘𝐾)) |
65 | 58, 50 | clatglbcl 17335 |
. . . . . 6
⊢ ((𝐾 ∈ CLat ∧ (◡𝐼 “ 𝑆) ⊆ (Base‘𝐾)) → ((glb‘𝐾)‘(◡𝐼 “ 𝑆)) ∈ (Base‘𝐾)) |
66 | 57, 64, 65 | syl2anc 696 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ((glb‘𝐾)‘(◡𝐼 “ 𝑆)) ∈ (Base‘𝐾)) |
67 | | n0 4074 |
. . . . . . 7
⊢ ((◡𝐼 “ 𝑆) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (◡𝐼 “ 𝑆)) |
68 | 49, 67 | sylib 208 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∃𝑦 𝑦 ∈ (◡𝐼 “ 𝑆)) |
69 | | hllat 35171 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
70 | 69 | ad3antrrr 768 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → 𝐾 ∈ Lat) |
71 | 66 | adantr 472 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → ((glb‘𝐾)‘(◡𝐼 “ 𝑆)) ∈ (Base‘𝐾)) |
72 | 64 | sselda 3744 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → 𝑦 ∈ (Base‘𝐾)) |
73 | 58, 1 | lhpbase 35805 |
. . . . . . . 8
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
74 | 73 | ad3antlr 769 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → 𝑊 ∈ (Base‘𝐾)) |
75 | 56 | ad3antrrr 768 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → 𝐾 ∈ CLat) |
76 | 60 | adantr 472 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → dom 𝐼 = {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊}) |
77 | 7, 76 | syl5sseq 3794 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (◡𝐼 “ 𝑆) ⊆ {𝑥 ∈ (Base‘𝐾) ∣ 𝑥(le‘𝐾)𝑊}) |
78 | 77, 61 | syl6ss 3756 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (◡𝐼 “ 𝑆) ⊆ (Base‘𝐾)) |
79 | 78 | adantr 472 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → (◡𝐼 “ 𝑆) ⊆ (Base‘𝐾)) |
80 | | simpr 479 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → 𝑦 ∈ (◡𝐼 “ 𝑆)) |
81 | 58, 59, 50 | clatglble 17346 |
. . . . . . . 8
⊢ ((𝐾 ∈ CLat ∧ (◡𝐼 “ 𝑆) ⊆ (Base‘𝐾) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → ((glb‘𝐾)‘(◡𝐼 “ 𝑆))(le‘𝐾)𝑦) |
82 | 75, 79, 80, 81 | syl3anc 1477 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → ((glb‘𝐾)‘(◡𝐼 “ 𝑆))(le‘𝐾)𝑦) |
83 | 7 | sseli 3740 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (◡𝐼 “ 𝑆) → 𝑦 ∈ dom 𝐼) |
84 | 83 | adantl 473 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → 𝑦 ∈ dom 𝐼) |
85 | 58, 59, 1, 2 | dibeldmN 36967 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))) |
86 | 85 | ad2antrr 764 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → (𝑦 ∈ dom 𝐼 ↔ (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊))) |
87 | 84, 86 | mpbid 222 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → (𝑦 ∈ (Base‘𝐾) ∧ 𝑦(le‘𝐾)𝑊)) |
88 | 87 | simprd 482 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → 𝑦(le‘𝐾)𝑊) |
89 | 58, 59, 70, 71, 72, 74, 82, 88 | lattrd 17279 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) ∧ 𝑦 ∈ (◡𝐼 “ 𝑆)) → ((glb‘𝐾)‘(◡𝐼 “ 𝑆))(le‘𝐾)𝑊) |
90 | 68, 89 | exlimddv 2012 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ((glb‘𝐾)‘(◡𝐼 “ 𝑆))(le‘𝐾)𝑊) |
91 | 58, 59, 1, 2 | dibeldmN 36967 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((glb‘𝐾)‘(◡𝐼 “ 𝑆)) ∈ dom 𝐼 ↔ (((glb‘𝐾)‘(◡𝐼 “ 𝑆)) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘(◡𝐼 “ 𝑆))(le‘𝐾)𝑊))) |
92 | 91 | adantr 472 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (((glb‘𝐾)‘(◡𝐼 “ 𝑆)) ∈ dom 𝐼 ↔ (((glb‘𝐾)‘(◡𝐼 “ 𝑆)) ∈ (Base‘𝐾) ∧ ((glb‘𝐾)‘(◡𝐼 “ 𝑆))(le‘𝐾)𝑊))) |
93 | 66, 90, 92 | mpbir2and 995 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ((glb‘𝐾)‘(◡𝐼 “ 𝑆)) ∈ dom 𝐼) |
94 | 1, 2 | dibclN 36971 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((glb‘𝐾)‘(◡𝐼 “ 𝑆)) ∈ dom 𝐼) → (𝐼‘((glb‘𝐾)‘(◡𝐼 “ 𝑆))) ∈ ran 𝐼) |
95 | 93, 94 | syldan 488 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → (𝐼‘((glb‘𝐾)‘(◡𝐼 “ 𝑆))) ∈ ran 𝐼) |
96 | 55, 95 | eqeltrrd 2840 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ 𝑦 ∈ (◡𝐼 “ 𝑆)((𝐼 ↾ (◡𝐼 “ 𝑆))‘𝑦) ∈ ran 𝐼) |
97 | 21, 96 | eqeltrrd 2840 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ⊆ ran 𝐼 ∧ 𝑆 ≠ ∅)) → ∩ 𝑆
∈ ran 𝐼) |