![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dib2dim | Structured version Visualization version GIF version |
Description: Extend dia2dim 36887 to partial isomorphism B. (Contributed by NM, 22-Sep-2014.) |
Ref | Expression |
---|---|
dib2dim.l | ⊢ ≤ = (le‘𝐾) |
dib2dim.j | ⊢ ∨ = (join‘𝐾) |
dib2dim.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dib2dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dib2dim.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dib2dim.s | ⊢ ⊕ = (LSSum‘𝑈) |
dib2dim.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
dib2dim.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dib2dim.p | ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊)) |
dib2dim.q | ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) |
Ref | Expression |
---|---|
dib2dim | ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) ⊆ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dib2dim.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dib2dim.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | dib2dim.i | . . . 4 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
4 | 2, 3 | dibvalrel 36973 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → Rel (𝐼‘(𝑃 ∨ 𝑄))) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → Rel (𝐼‘(𝑃 ∨ 𝑄))) |
6 | dib2dim.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
7 | dib2dim.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
8 | dib2dim.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | eqid 2769 | . . . . . 6 ⊢ ((DVecA‘𝐾)‘𝑊) = ((DVecA‘𝐾)‘𝑊) | |
10 | eqid 2769 | . . . . . 6 ⊢ (LSSum‘((DVecA‘𝐾)‘𝑊)) = (LSSum‘((DVecA‘𝐾)‘𝑊)) | |
11 | eqid 2769 | . . . . . 6 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
12 | dib2dim.p | . . . . . 6 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ 𝑃 ≤ 𝑊)) | |
13 | dib2dim.q | . . . . . 6 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑊)) | |
14 | 6, 7, 8, 2, 9, 10, 11, 1, 12, 13 | dia2dim 36887 | . . . . 5 ⊢ (𝜑 → (((DIsoA‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) ⊆ ((((DIsoA‘𝐾)‘𝑊)‘𝑃)(LSSum‘((DVecA‘𝐾)‘𝑊))(((DIsoA‘𝐾)‘𝑊)‘𝑄))) |
15 | 14 | sseld 3748 | . . . 4 ⊢ (𝜑 → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) → 𝑓 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑃)(LSSum‘((DVecA‘𝐾)‘𝑊))(((DIsoA‘𝐾)‘𝑊)‘𝑄)))) |
16 | 15 | anim1d 590 | . . 3 ⊢ (𝜑 → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))) → (𝑓 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑃)(LSSum‘((DVecA‘𝐾)‘𝑊))(((DIsoA‘𝐾)‘𝑊)‘𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
17 | 1 | simpld 478 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
18 | 12 | simpld 478 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
19 | 13 | simpld 478 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
20 | eqid 2769 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
21 | 20, 7, 8 | hlatjcl 35175 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
22 | 17, 18, 19, 21 | syl3anc 1474 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
23 | 12 | simprd 483 | . . . . 5 ⊢ (𝜑 → 𝑃 ≤ 𝑊) |
24 | 13 | simprd 483 | . . . . 5 ⊢ (𝜑 → 𝑄 ≤ 𝑊) |
25 | hllat 35172 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
26 | 17, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ Lat) |
27 | 20, 8 | atbase 35098 | . . . . . . 7 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
28 | 18, 27 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ (Base‘𝐾)) |
29 | 20, 8 | atbase 35098 | . . . . . . 7 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
30 | 19, 29 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ (Base‘𝐾)) |
31 | 1 | simprd 483 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
32 | 20, 2 | lhpbase 35806 | . . . . . . 7 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
33 | 31, 32 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐾)) |
34 | 20, 6, 7 | latjle12 17276 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊) ↔ (𝑃 ∨ 𝑄) ≤ 𝑊)) |
35 | 26, 28, 30, 33, 34 | syl13anc 1476 | . . . . 5 ⊢ (𝜑 → ((𝑃 ≤ 𝑊 ∧ 𝑄 ≤ 𝑊) ↔ (𝑃 ∨ 𝑄) ≤ 𝑊)) |
36 | 23, 24, 35 | mpbi2and 991 | . . . 4 ⊢ (𝜑 → (𝑃 ∨ 𝑄) ≤ 𝑊) |
37 | eqid 2769 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
38 | eqid 2769 | . . . . 5 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾))) | |
39 | 20, 6, 2, 37, 38, 11, 3 | dibopelval2 36955 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ≤ 𝑊)) → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑃 ∨ 𝑄)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
40 | 1, 22, 36, 39 | syl12anc 1472 | . . 3 ⊢ (𝜑 → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑃 ∨ 𝑄)) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑃 ∨ 𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
41 | dib2dim.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
42 | dib2dim.s | . . . 4 ⊢ ⊕ = (LSSum‘𝑈) | |
43 | 28, 23 | jca 556 | . . . 4 ⊢ (𝜑 → (𝑃 ∈ (Base‘𝐾) ∧ 𝑃 ≤ 𝑊)) |
44 | 30, 24 | jca 556 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ (Base‘𝐾) ∧ 𝑄 ≤ 𝑊)) |
45 | 20, 6, 2, 37, 38, 9, 41, 10, 42, 11, 3, 1, 43, 44 | diblsmopel 36981 | . . 3 ⊢ (𝜑 → (〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄)) ↔ (𝑓 ∈ ((((DIsoA‘𝐾)‘𝑊)‘𝑃)(LSSum‘((DVecA‘𝐾)‘𝑊))(((DIsoA‘𝐾)‘𝑊)‘𝑄)) ∧ 𝑠 = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ (Base‘𝐾)))))) |
46 | 16, 40, 45 | 3imtr4d 283 | . 2 ⊢ (𝜑 → (〈𝑓, 𝑠〉 ∈ (𝐼‘(𝑃 ∨ 𝑄)) → 〈𝑓, 𝑠〉 ∈ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄)))) |
47 | 5, 46 | relssdv 5351 | 1 ⊢ (𝜑 → (𝐼‘(𝑃 ∨ 𝑄)) ⊆ ((𝐼‘𝑃) ⊕ (𝐼‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1629 ∈ wcel 2143 ⊆ wss 3720 〈cop 4319 class class class wbr 4783 ↦ cmpt 4860 I cid 5155 ↾ cres 5250 Rel wrel 5253 ‘cfv 6030 (class class class)co 6791 Basecbs 16070 lecple 16162 joincjn 17158 Latclat 17259 LSSumclsm 18262 Atomscatm 35072 HLchlt 35159 LHypclh 35792 LTrncltrn 35909 DVecAcdveca 36811 DIsoAcdia 36838 DVecHcdvh 36888 DIsoBcdib 36948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-fal 1635 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rmo 3067 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-int 4609 df-iun 4653 df-iin 4654 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-tpos 7502 df-undef 7549 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-oadd 7715 df-er 7894 df-map 8009 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-5 11282 df-6 11283 df-n0 11493 df-z 11578 df-uz 11888 df-fz 12533 df-struct 16072 df-ndx 16073 df-slot 16074 df-base 16076 df-sets 16077 df-ress 16078 df-plusg 16168 df-mulr 16169 df-sca 16171 df-vsca 16172 df-0g 16316 df-preset 17142 df-poset 17160 df-plt 17172 df-lub 17188 df-glb 17189 df-join 17190 df-meet 17191 df-p0 17253 df-p1 17254 df-lat 17260 df-clat 17322 df-mgm 17456 df-sgrp 17498 df-mnd 17509 df-submnd 17550 df-grp 17639 df-minusg 17640 df-sbg 17641 df-subg 17805 df-cntz 17963 df-lsm 18264 df-cmn 18408 df-abl 18409 df-mgp 18704 df-ur 18716 df-ring 18763 df-oppr 18837 df-dvdsr 18855 df-unit 18856 df-invr 18886 df-dvr 18897 df-drng 18965 df-lmod 19081 df-lss 19149 df-lsp 19191 df-lvec 19322 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35306 df-lplanes 35307 df-lvols 35308 df-lines 35309 df-psubsp 35311 df-pmap 35312 df-padd 35604 df-lhyp 35796 df-laut 35797 df-ldil 35912 df-ltrn 35913 df-trl 35968 df-tgrp 36552 df-tendo 36564 df-edring 36566 df-dveca 36812 df-disoa 36839 df-dvech 36889 df-dib 36949 |
This theorem is referenced by: dih2dimb 37054 |
Copyright terms: Public domain | W3C validator |