Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dib1dim Structured version   Visualization version   GIF version

Theorem dib1dim 36975
Description: Two expressions for the 1-dimensional subspaces of vector space H. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
dib1dim.b 𝐵 = (Base‘𝐾)
dib1dim.h 𝐻 = (LHyp‘𝐾)
dib1dim.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dib1dim.r 𝑅 = ((trL‘𝐾)‘𝑊)
dib1dim.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dib1dim.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dib1dim.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dib1dim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩})
Distinct variable groups:   𝐵,   𝑔,𝑠,𝐸   𝑔,𝐹,𝑠   𝐻,𝑠   ,𝑠,𝐾   𝑔,𝑂,𝑠   𝑅,𝑠   𝑔,,𝑇,𝑠   ,𝑊,𝑠
Allowed substitution hints:   𝐵(𝑔,𝑠)   𝑅(𝑔,)   𝐸()   𝐹()   𝐻(𝑔,)   𝐼(𝑔,,𝑠)   𝐾(𝑔)   𝑂()   𝑊(𝑔)

Proof of Theorem dib1dim
Dummy variables 𝑓 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 468 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dib1dim.b . . . . 5 𝐵 = (Base‘𝐾)
3 dib1dim.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 dib1dim.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 dib1dim.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
62, 3, 4, 5trlcl 35973 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ 𝐵)
7 eqid 2771 . . . . 5 (le‘𝐾) = (le‘𝐾)
87, 3, 4, 5trlle 35993 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹)(le‘𝐾)𝑊)
9 dib1dim.o . . . . 5 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
10 eqid 2771 . . . . 5 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
11 dib1dim.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
122, 7, 3, 4, 9, 10, 11dibval2 36954 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝐹) ∈ 𝐵 ∧ (𝑅𝐹)(le‘𝐾)𝑊)) → (𝐼‘(𝑅𝐹)) = ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}))
131, 6, 8, 12syl12anc 1474 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}))
14 relxp 5266 . . . 4 Rel ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂})
15 opelxp 5286 . . . . 5 (⟨𝑓, 𝑡⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) ↔ (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}))
16 dib1dim.e . . . . . . . . 9 𝐸 = ((TEndo‘𝐾)‘𝑊)
173, 4, 5, 16, 10dia1dim 36871 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) = {𝑓 ∣ ∃𝑠𝐸 𝑓 = (𝑠𝐹)})
1817abeq2d 2883 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ↔ ∃𝑠𝐸 𝑓 = (𝑠𝐹)))
1918anbi1d 615 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂})))
203, 4, 16tendocl 36576 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
21203expa 1111 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) ∧ 𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
2221an32s 631 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → (𝑠𝐹) ∈ 𝑇)
232, 3, 4, 16, 9tendo0cl 36599 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
2423ad2antrr 705 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → 𝑂𝐸)
2522, 24jca 501 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑠𝐹) ∈ 𝑇𝑂𝐸))
26 eleq1 2838 . . . . . . . . . . 11 (𝑓 = (𝑠𝐹) → (𝑓𝑇 ↔ (𝑠𝐹) ∈ 𝑇))
27 eleq1 2838 . . . . . . . . . . 11 (𝑡 = 𝑂 → (𝑡𝐸𝑂𝐸))
2826, 27bi2anan9 620 . . . . . . . . . 10 ((𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → ((𝑓𝑇𝑡𝐸) ↔ ((𝑠𝐹) ∈ 𝑇𝑂𝐸)))
2925, 28syl5ibrcom 237 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → (𝑓𝑇𝑡𝐸)))
3029rexlimdva 3179 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) → (𝑓𝑇𝑡𝐸)))
3130pm4.71rd 552 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) ↔ ((𝑓𝑇𝑡𝐸) ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
32 velsn 4332 . . . . . . . . 9 (𝑡 ∈ {𝑂} ↔ 𝑡 = 𝑂)
3332anbi2i 609 . . . . . . . 8 ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
34 r19.41v 3237 . . . . . . . 8 (∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂) ↔ (∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
3533, 34bitr4i 267 . . . . . . 7 ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
36 df-3an 1073 . . . . . . 7 ((𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)) ↔ ((𝑓𝑇𝑡𝐸) ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
3731, 35, 363bitr4g 303 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((∃𝑠𝐸 𝑓 = (𝑠𝐹) ∧ 𝑡 ∈ {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
3819, 37bitrd 268 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑓 ∈ (((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) ∧ 𝑡 ∈ {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
3915, 38syl5bb 272 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (⟨𝑓, 𝑡⟩ ∈ ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) ↔ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))))
4014, 39opabbi2dv 5410 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((((DIsoA‘𝐾)‘𝑊)‘(𝑅𝐹)) × {𝑂}) = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))})
4113, 40eqtrd 2805 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))})
42 eqeq1 2775 . . . . 5 (𝑔 = ⟨𝑓, 𝑡⟩ → (𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ ⟨𝑓, 𝑡⟩ = ⟨(𝑠𝐹), 𝑂⟩))
43 vex 3354 . . . . . 6 𝑓 ∈ V
44 vex 3354 . . . . . 6 𝑡 ∈ V
4543, 44opth 5072 . . . . 5 (⟨𝑓, 𝑡⟩ = ⟨(𝑠𝐹), 𝑂⟩ ↔ (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))
4642, 45syl6bb 276 . . . 4 (𝑔 = ⟨𝑓, 𝑡⟩ → (𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
4746rexbidv 3200 . . 3 (𝑔 = ⟨𝑓, 𝑡⟩ → (∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩ ↔ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂)))
4847rabxp 5294 . 2 {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩} = {⟨𝑓, 𝑡⟩ ∣ (𝑓𝑇𝑡𝐸 ∧ ∃𝑠𝐸 (𝑓 = (𝑠𝐹) ∧ 𝑡 = 𝑂))}
4941, 48syl6eqr 2823 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝐼‘(𝑅𝐹)) = {𝑔 ∈ (𝑇 × 𝐸) ∣ ∃𝑠𝐸 𝑔 = ⟨(𝑠𝐹), 𝑂⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wrex 3062  {crab 3065  {csn 4316  cop 4322   class class class wbr 4786  {copab 4846  cmpt 4863   I cid 5156   × cxp 5247  cres 5251  cfv 6031  Basecbs 16064  lecple 16156  HLchlt 35159  LHypclh 35792  LTrncltrn 35909  trLctrl 35967  TEndoctendo 36561  DIsoAcdia 36838  DIsoBcdib 36948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-riotaBAD 34761
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-undef 7551  df-map 8011  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35306  df-lplanes 35307  df-lvols 35308  df-lines 35309  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796  df-laut 35797  df-ldil 35912  df-ltrn 35913  df-trl 35968  df-tendo 36564  df-disoa 36839  df-dib 36949
This theorem is referenced by:  dib1dim2  36978
  Copyright terms: Public domain W3C validator