![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diameetN | Structured version Visualization version GIF version |
Description: Partial isomorphism A of a lattice meet. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
diam.m | ⊢ ∧ = (meet‘𝐾) |
diam.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diam.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
diameetN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . 4 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
2 | diam.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
3 | simpll 805 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → 𝐾 ∈ HL) | |
4 | eqid 2651 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | diam.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | diam.i | . . . . . 6 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
7 | 4, 5, 6 | diadmclN 36643 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ (Base‘𝐾)) |
8 | 7 | adantrr 753 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → 𝑋 ∈ (Base‘𝐾)) |
9 | 4, 5, 6 | diadmclN 36643 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ dom 𝐼) → 𝑌 ∈ (Base‘𝐾)) |
10 | 9 | adantrl 752 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → 𝑌 ∈ (Base‘𝐾)) |
11 | 1, 2, 3, 8, 10 | meetval 17066 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
12 | 11 | fveq2d 6233 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 ∧ 𝑌)) = (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌}))) |
13 | simpl 472 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
14 | prssi 4385 | . . . 4 ⊢ ((𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼) → {𝑋, 𝑌} ⊆ dom 𝐼) | |
15 | 14 | adantl 481 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → {𝑋, 𝑌} ⊆ dom 𝐼) |
16 | prnzg 4342 | . . . 4 ⊢ (𝑋 ∈ dom 𝐼 → {𝑋, 𝑌} ≠ ∅) | |
17 | 16 | ad2antrl 764 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → {𝑋, 𝑌} ≠ ∅) |
18 | 1, 5, 6 | diaglbN 36661 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ({𝑋, 𝑌} ⊆ dom 𝐼 ∧ {𝑋, 𝑌} ≠ ∅)) → (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥)) |
19 | 13, 15, 17, 18 | syl12anc 1364 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → (𝐼‘((glb‘𝐾)‘{𝑋, 𝑌})) = ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥)) |
20 | fveq2 6229 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐼‘𝑥) = (𝐼‘𝑋)) | |
21 | fveq2 6229 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝐼‘𝑥) = (𝐼‘𝑌)) | |
22 | 20, 21 | iinxprg 4633 | . . 3 ⊢ ((𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
23 | 22 | adantl 481 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → ∩ 𝑥 ∈ {𝑋, 𝑌} (𝐼‘𝑥) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
24 | 12, 19, 23 | 3eqtrd 2689 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼)) → (𝐼‘(𝑋 ∧ 𝑌)) = ((𝐼‘𝑋) ∩ (𝐼‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 {cpr 4212 ∩ ciin 4553 dom cdm 5143 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 glbcglb 16990 meetcmee 16992 HLchlt 34955 LHypclh 35588 DIsoAcdia 36634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-p1 17087 df-lat 17093 df-clat 17155 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-lhyp 35592 df-laut 35593 df-ldil 35708 df-ltrn 35709 df-trl 35764 df-disoa 36635 |
This theorem is referenced by: diainN 36663 djajN 36743 |
Copyright terms: Public domain | W3C validator |