Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaffval Structured version   Visualization version   GIF version

Theorem diaffval 36839
Description: The partial isomorphism A for a lattice 𝐾. (Contributed by NM, 15-Oct-2013.)
Hypotheses
Ref Expression
diaval.b 𝐵 = (Base‘𝐾)
diaval.l = (le‘𝐾)
diaval.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
diaffval (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
Distinct variable groups:   𝑥,𝑤,𝑦,   𝑤,𝐵,𝑥,𝑦   𝑤,𝐻   𝑤,𝑓,𝑥,𝑦,𝐾
Allowed substitution hints:   𝐵(𝑓)   𝐻(𝑥,𝑦,𝑓)   (𝑓)   𝑉(𝑥,𝑦,𝑤,𝑓)

Proof of Theorem diaffval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3352 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6353 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 diaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3syl6eqr 2812 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6353 . . . . . . 7 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
6 diaval.b . . . . . . 7 𝐵 = (Base‘𝐾)
75, 6syl6eqr 2812 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
8 fveq2 6353 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
9 diaval.l . . . . . . . 8 = (le‘𝐾)
108, 9syl6eqr 2812 . . . . . . 7 (𝑘 = 𝐾 → (le‘𝑘) = )
1110breqd 4815 . . . . . 6 (𝑘 = 𝐾 → (𝑦(le‘𝑘)𝑤𝑦 𝑤))
127, 11rabeqbidv 3335 . . . . 5 (𝑘 = 𝐾 → {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} = {𝑦𝐵𝑦 𝑤})
13 fveq2 6353 . . . . . . 7 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
1413fveq1d 6355 . . . . . 6 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
15 fveq2 6353 . . . . . . . . 9 (𝑘 = 𝐾 → (trL‘𝑘) = (trL‘𝐾))
1615fveq1d 6355 . . . . . . . 8 (𝑘 = 𝐾 → ((trL‘𝑘)‘𝑤) = ((trL‘𝐾)‘𝑤))
1716fveq1d 6355 . . . . . . 7 (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘𝑓) = (((trL‘𝐾)‘𝑤)‘𝑓))
18 eqidd 2761 . . . . . . 7 (𝑘 = 𝐾𝑥 = 𝑥)
1917, 10, 18breq123d 4818 . . . . . 6 (𝑘 = 𝐾 → ((((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥 ↔ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥))
2014, 19rabeqbidv 3335 . . . . 5 (𝑘 = 𝐾 → {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥} = {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})
2112, 20mpteq12dv 4885 . . . 4 (𝑘 = 𝐾 → (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥}) = (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥}))
224, 21mpteq12dv 4885 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
23 df-disoa 36838 . . 3 DIsoA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})))
24 fvex 6363 . . . . 5 (LHyp‘𝐾) ∈ V
253, 24eqeltri 2835 . . . 4 𝐻 ∈ V
2625mptex 6651 . . 3 (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})) ∈ V
2722, 23, 26fvmpt 6445 . 2 (𝐾 ∈ V → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
281, 27syl 17 1 (𝐾𝑉 → (DIsoA‘𝐾) = (𝑤𝐻 ↦ (𝑥 ∈ {𝑦𝐵𝑦 𝑤} ↦ {𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ∣ (((trL‘𝐾)‘𝑤)‘𝑓) 𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  {crab 3054  Vcvv 3340   class class class wbr 4804  cmpt 4881  cfv 6049  Basecbs 16079  lecple 16170  LHypclh 35791  LTrncltrn 35908  trLctrl 35966  DIsoAcdia 36837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-disoa 36838
This theorem is referenced by:  diafval  36840
  Copyright terms: Public domain W3C validator