Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem4 Structured version   Visualization version   GIF version

Theorem dia2dimlem4 36877
Description: Lemma for dia2dim 36887. Show that the composition (sum) of translations (vectors) 𝐺 and 𝐷 equals 𝐹. Part of proof of Lemma M in [Crawley] p. 121 line 5. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem4.l = (le‘𝐾)
dia2dimlem4.a 𝐴 = (Atoms‘𝐾)
dia2dimlem4.h 𝐻 = (LHyp‘𝐾)
dia2dimlem4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem4.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem4.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem4.f (𝜑𝐹𝑇)
dia2dimlem4.g (𝜑𝐺𝑇)
dia2dimlem4.gv (𝜑 → (𝐺𝑃) = 𝑄)
dia2dimlem4.d (𝜑𝐷𝑇)
dia2dimlem4.dv (𝜑 → (𝐷𝑄) = (𝐹𝑃))
Assertion
Ref Expression
dia2dimlem4 (𝜑 → (𝐷𝐺) = 𝐹)

Proof of Theorem dia2dimlem4
StepHypRef Expression
1 dia2dimlem4.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dia2dimlem4.d . . 3 (𝜑𝐷𝑇)
3 dia2dimlem4.g . . 3 (𝜑𝐺𝑇)
4 dia2dimlem4.h . . . 4 𝐻 = (LHyp‘𝐾)
5 dia2dimlem4.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrnco 36528 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇𝐺𝑇) → (𝐷𝐺) ∈ 𝑇)
71, 2, 3, 6syl3anc 1476 . 2 (𝜑 → (𝐷𝐺) ∈ 𝑇)
8 dia2dimlem4.f . 2 (𝜑𝐹𝑇)
9 dia2dimlem4.p . 2 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
109simpld 482 . . . 4 (𝜑𝑃𝐴)
11 dia2dimlem4.l . . . . 5 = (le‘𝐾)
12 dia2dimlem4.a . . . . 5 𝐴 = (Atoms‘𝐾)
1311, 12, 4, 5ltrncoval 35953 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐷𝑇𝐺𝑇) ∧ 𝑃𝐴) → ((𝐷𝐺)‘𝑃) = (𝐷‘(𝐺𝑃)))
141, 2, 3, 10, 13syl121anc 1481 . . 3 (𝜑 → ((𝐷𝐺)‘𝑃) = (𝐷‘(𝐺𝑃)))
15 dia2dimlem4.gv . . . 4 (𝜑 → (𝐺𝑃) = 𝑄)
1615fveq2d 6336 . . 3 (𝜑 → (𝐷‘(𝐺𝑃)) = (𝐷𝑄))
17 dia2dimlem4.dv . . 3 (𝜑 → (𝐷𝑄) = (𝐹𝑃))
1814, 16, 173eqtrd 2809 . 2 (𝜑 → ((𝐷𝐺)‘𝑃) = (𝐹𝑃))
1911, 12, 4, 5cdlemd 36016 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐷𝐺) ∈ 𝑇𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝐷𝐺)‘𝑃) = (𝐹𝑃)) → (𝐷𝐺) = 𝐹)
201, 7, 8, 9, 18, 19syl311anc 1490 1 (𝜑 → (𝐷𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145   class class class wbr 4786  ccom 5253  cfv 6031  lecple 16156  Atomscatm 35072  HLchlt 35159  LHypclh 35792  LTrncltrn 35909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-riotaBAD 34761
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-undef 7551  df-map 8011  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-llines 35306  df-lplanes 35307  df-lvols 35308  df-lines 35309  df-psubsp 35311  df-pmap 35312  df-padd 35604  df-lhyp 35796  df-laut 35797  df-ldil 35912  df-ltrn 35913  df-trl 35968
This theorem is referenced by:  dia2dimlem5  36878
  Copyright terms: Public domain W3C validator