Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem2 Structured version   Visualization version   GIF version

Theorem dia2dimlem2 36856
Description: Lemma for dia2dim 36868. Define a translation 𝐺 whose trace is atom 𝑈. Part of proof of Lemma M in [Crawley] p. 121 line 4. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem2.l = (le‘𝐾)
dia2dimlem2.j = (join‘𝐾)
dia2dimlem2.m = (meet‘𝐾)
dia2dimlem2.a 𝐴 = (Atoms‘𝐾)
dia2dimlem2.h 𝐻 = (LHyp‘𝐾)
dia2dimlem2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem2.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem2.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem2.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem2.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem2.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem2.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem2.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem2.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem2.rv (𝜑 → (𝑅𝐹) ≠ 𝑉)
dia2dimlem2.g (𝜑𝐺𝑇)
dia2dimlem2.gv (𝜑 → (𝐺𝑃) = 𝑄)
Assertion
Ref Expression
dia2dimlem2 (𝜑 → (𝑅𝐺) = 𝑈)

Proof of Theorem dia2dimlem2
StepHypRef Expression
1 dia2dimlem2.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
21simpld 477 . . . . . . . 8 (𝜑𝐾 ∈ HL)
3 hllat 35153 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
42, 3syl 17 . . . . . . 7 (𝜑𝐾 ∈ Lat)
5 dia2dimlem2.p . . . . . . . . 9 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
65simpld 477 . . . . . . . 8 (𝜑𝑃𝐴)
7 eqid 2760 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
8 dia2dimlem2.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
97, 8atbase 35079 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
106, 9syl 17 . . . . . . 7 (𝜑𝑃 ∈ (Base‘𝐾))
11 dia2dimlem2.u . . . . . . . . 9 (𝜑 → (𝑈𝐴𝑈 𝑊))
1211simpld 477 . . . . . . . 8 (𝜑𝑈𝐴)
137, 8atbase 35079 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
1412, 13syl 17 . . . . . . 7 (𝜑𝑈 ∈ (Base‘𝐾))
15 dia2dimlem2.l . . . . . . . 8 = (le‘𝐾)
16 dia2dimlem2.j . . . . . . . 8 = (join‘𝐾)
177, 15, 16latlej2 17262 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 (𝑃 𝑈))
184, 10, 14, 17syl3anc 1477 . . . . . 6 (𝜑𝑈 (𝑃 𝑈))
197, 16, 8hlatjcl 35156 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
202, 6, 12, 19syl3anc 1477 . . . . . . 7 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
21 dia2dimlem2.m . . . . . . . 8 = (meet‘𝐾)
227, 15, 21latleeqm2 17281 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾)) → (𝑈 (𝑃 𝑈) ↔ ((𝑃 𝑈) 𝑈) = 𝑈))
234, 14, 20, 22syl3anc 1477 . . . . . 6 (𝜑 → (𝑈 (𝑃 𝑈) ↔ ((𝑃 𝑈) 𝑈) = 𝑈))
2418, 23mpbid 222 . . . . 5 (𝜑 → ((𝑃 𝑈) 𝑈) = 𝑈)
25 dia2dimlem2.rf . . . . . . . 8 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
26 dia2dimlem2.f . . . . . . . . . 10 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
27 dia2dimlem2.h . . . . . . . . . . 11 𝐻 = (LHyp‘𝐾)
28 dia2dimlem2.t . . . . . . . . . . 11 𝑇 = ((LTrn‘𝐾)‘𝑊)
29 dia2dimlem2.r . . . . . . . . . . 11 𝑅 = ((trL‘𝐾)‘𝑊)
3015, 8, 27, 28, 29trlat 35959 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
311, 5, 26, 30syl3anc 1477 . . . . . . . . 9 (𝜑 → (𝑅𝐹) ∈ 𝐴)
32 dia2dimlem2.v . . . . . . . . . 10 (𝜑 → (𝑉𝐴𝑉 𝑊))
3332simpld 477 . . . . . . . . 9 (𝜑𝑉𝐴)
34 dia2dimlem2.rv . . . . . . . . 9 (𝜑 → (𝑅𝐹) ≠ 𝑉)
3515, 16, 8hlatexch2 35185 . . . . . . . . 9 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑈𝐴𝑉𝐴) ∧ (𝑅𝐹) ≠ 𝑉) → ((𝑅𝐹) (𝑈 𝑉) → 𝑈 ((𝑅𝐹) 𝑉)))
362, 31, 12, 33, 34, 35syl131anc 1490 . . . . . . . 8 (𝜑 → ((𝑅𝐹) (𝑈 𝑉) → 𝑈 ((𝑅𝐹) 𝑉)))
3725, 36mpd 15 . . . . . . 7 (𝜑𝑈 ((𝑅𝐹) 𝑉))
3826simpld 477 . . . . . . . . . 10 (𝜑𝐹𝑇)
3915, 16, 21, 8, 27, 28, 29trlval2 35953 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
401, 38, 5, 39syl3anc 1477 . . . . . . . . 9 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
4140oveq1d 6828 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑊) 𝑉))
4215, 8, 27, 28ltrnel 35928 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
431, 38, 5, 42syl3anc 1477 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
4443simpld 477 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) ∈ 𝐴)
457, 16, 8hlatjcl 35156 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
462, 6, 44, 45syl3anc 1477 . . . . . . . . . 10 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
471simprd 482 . . . . . . . . . . 11 (𝜑𝑊𝐻)
487, 27lhpbase 35787 . . . . . . . . . . 11 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
4947, 48syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ (Base‘𝐾))
5032simprd 482 . . . . . . . . . 10 (𝜑𝑉 𝑊)
517, 15, 16, 21, 8atmod4i1 35655 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑉𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑉 𝑊) → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑉) 𝑊))
522, 33, 46, 49, 50, 51syl131anc 1490 . . . . . . . . 9 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = (((𝑃 (𝐹𝑃)) 𝑉) 𝑊))
5316, 8hlatjass 35159 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴)) → ((𝑃 (𝐹𝑃)) 𝑉) = (𝑃 ((𝐹𝑃) 𝑉)))
542, 6, 44, 33, 53syl13anc 1479 . . . . . . . . . 10 (𝜑 → ((𝑃 (𝐹𝑃)) 𝑉) = (𝑃 ((𝐹𝑃) 𝑉)))
5554oveq1d 6828 . . . . . . . . 9 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑉) 𝑊) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5652, 55eqtrd 2794 . . . . . . . 8 (𝜑 → (((𝑃 (𝐹𝑃)) 𝑊) 𝑉) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5741, 56eqtrd 2794 . . . . . . 7 (𝜑 → ((𝑅𝐹) 𝑉) = ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
5837, 57breqtrd 4830 . . . . . 6 (𝜑𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))
597, 16, 8hlatjcl 35156 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
602, 44, 33, 59syl3anc 1477 . . . . . . . . 9 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
617, 16latjcl 17252 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾))
624, 10, 60, 61syl3anc 1477 . . . . . . . 8 (𝜑 → (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾))
637, 21latmcl 17253 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾))
644, 62, 49, 63syl3anc 1477 . . . . . . 7 (𝜑 → ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾))
657, 15, 21latmlem2 17283 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾))) → (𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))))
664, 14, 64, 20, 65syl13anc 1479 . . . . . 6 (𝜑 → (𝑈 ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊) → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊))))
6758, 66mpd 15 . . . . 5 (𝜑 → ((𝑃 𝑈) 𝑈) ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
6824, 67eqbrtrrd 4828 . . . 4 (𝜑𝑈 ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
69 dia2dimlem2.g . . . . . . 7 (𝜑𝐺𝑇)
7015, 16, 21, 8, 27, 28, 29trlval2 35953 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
711, 69, 5, 70syl3anc 1477 . . . . . 6 (𝜑 → (𝑅𝐺) = ((𝑃 (𝐺𝑃)) 𝑊))
72 dia2dimlem2.gv . . . . . . . . . 10 (𝜑 → (𝐺𝑃) = 𝑄)
73 dia2dimlem2.q . . . . . . . . . 10 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
7472, 73syl6eq 2810 . . . . . . . . 9 (𝜑 → (𝐺𝑃) = ((𝑃 𝑈) ((𝐹𝑃) 𝑉)))
7574oveq2d 6829 . . . . . . . 8 (𝜑 → (𝑃 (𝐺𝑃)) = (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))))
7675oveq1d 6828 . . . . . . 7 (𝜑 → ((𝑃 (𝐺𝑃)) 𝑊) = ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊))
7715, 16, 8hlatlej1 35164 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → 𝑃 (𝑃 𝑈))
782, 6, 12, 77syl3anc 1477 . . . . . . . . . 10 (𝜑𝑃 (𝑃 𝑈))
797, 15, 16, 21, 8atmod3i1 35653 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 𝑈)) → (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) = ((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))))
802, 6, 20, 60, 78, 79syl131anc 1490 . . . . . . . . 9 (𝜑 → (𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) = ((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))))
8180oveq1d 6828 . . . . . . . 8 (𝜑 → ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊) = (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊))
82 hlol 35151 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OL)
832, 82syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OL)
847, 21latmassOLD 35019 . . . . . . . . 9 ((𝐾 ∈ OL ∧ ((𝑃 𝑈) ∈ (Base‘𝐾) ∧ (𝑃 ((𝐹𝑃) 𝑉)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8583, 20, 62, 49, 84syl13anc 1479 . . . . . . . 8 (𝜑 → (((𝑃 𝑈) (𝑃 ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8681, 85eqtrd 2794 . . . . . . 7 (𝜑 → ((𝑃 ((𝑃 𝑈) ((𝐹𝑃) 𝑉))) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8776, 86eqtrd 2794 . . . . . 6 (𝜑 → ((𝑃 (𝐺𝑃)) 𝑊) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8871, 87eqtrd 2794 . . . . 5 (𝜑 → (𝑅𝐺) = ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)))
8988eqcomd 2766 . . . 4 (𝜑 → ((𝑃 𝑈) ((𝑃 ((𝐹𝑃) 𝑉)) 𝑊)) = (𝑅𝐺))
9068, 89breqtrd 4830 . . 3 (𝜑𝑈 (𝑅𝐺))
91 hlatl 35150 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
922, 91syl 17 . . . 4 (𝜑𝐾 ∈ AtLat)
93 hlop 35152 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ OP)
942, 93syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ OP)
95 eqid 2760 . . . . . . . . . 10 (0.‘𝐾) = (0.‘𝐾)
96 eqid 2760 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
9795, 96, 80ltat 35081 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑈𝐴) → (0.‘𝐾)(lt‘𝐾)𝑈)
9894, 12, 97syl2anc 696 . . . . . . . 8 (𝜑 → (0.‘𝐾)(lt‘𝐾)𝑈)
99 hlpos 35155 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Poset)
1002, 99syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Poset)
1017, 95op0cl 34974 . . . . . . . . . 10 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
10294, 101syl 17 . . . . . . . . 9 (𝜑 → (0.‘𝐾) ∈ (Base‘𝐾))
1037, 27, 28, 29trlcl 35954 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
1041, 69, 103syl2anc 696 . . . . . . . . 9 (𝜑 → (𝑅𝐺) ∈ (Base‘𝐾))
1057, 15, 96pltletr 17172 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ (𝑅𝐺) ∈ (Base‘𝐾))) → (((0.‘𝐾)(lt‘𝐾)𝑈𝑈 (𝑅𝐺)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺)))
106100, 102, 14, 104, 105syl13anc 1479 . . . . . . . 8 (𝜑 → (((0.‘𝐾)(lt‘𝐾)𝑈𝑈 (𝑅𝐺)) → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺)))
10798, 90, 106mp2and 717 . . . . . . 7 (𝜑 → (0.‘𝐾)(lt‘𝐾)(𝑅𝐺))
1087, 96, 95opltn0 34980 . . . . . . . 8 ((𝐾 ∈ OP ∧ (𝑅𝐺) ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐺) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
10994, 104, 108syl2anc 696 . . . . . . 7 (𝜑 → ((0.‘𝐾)(lt‘𝐾)(𝑅𝐺) ↔ (𝑅𝐺) ≠ (0.‘𝐾)))
110107, 109mpbid 222 . . . . . 6 (𝜑 → (𝑅𝐺) ≠ (0.‘𝐾))
111110neneqd 2937 . . . . 5 (𝜑 → ¬ (𝑅𝐺) = (0.‘𝐾))
11295, 8, 27, 28, 29trlator0 35961 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
1131, 69, 112syl2anc 696 . . . . . . 7 (𝜑 → ((𝑅𝐺) ∈ 𝐴 ∨ (𝑅𝐺) = (0.‘𝐾)))
114113orcomd 402 . . . . . 6 (𝜑 → ((𝑅𝐺) = (0.‘𝐾) ∨ (𝑅𝐺) ∈ 𝐴))
115114ord 391 . . . . 5 (𝜑 → (¬ (𝑅𝐺) = (0.‘𝐾) → (𝑅𝐺) ∈ 𝐴))
116111, 115mpd 15 . . . 4 (𝜑 → (𝑅𝐺) ∈ 𝐴)
11715, 8atcmp 35101 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑈𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → (𝑈 (𝑅𝐺) ↔ 𝑈 = (𝑅𝐺)))
11892, 12, 116, 117syl3anc 1477 . . 3 (𝜑 → (𝑈 (𝑅𝐺) ↔ 𝑈 = (𝑅𝐺)))
11990, 118mpbid 222 . 2 (𝜑𝑈 = (𝑅𝐺))
120119eqcomd 2766 1 (𝜑 → (𝑅𝐺) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cfv 6049  (class class class)co 6813  Basecbs 16059  lecple 16150  Posetcpo 17141  ltcplt 17142  joincjn 17145  meetcmee 17146  0.cp0 17238  Latclat 17246  OPcops 34962  OLcol 34964  Atomscatm 35053  AtLatcal 35054  HLchlt 35140  LHypclh 35773  LTrncltrn 35890  trLctrl 35948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-map 8025  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-psubsp 35292  df-pmap 35293  df-padd 35585  df-lhyp 35777  df-laut 35778  df-ldil 35893  df-ltrn 35894  df-trl 35949
This theorem is referenced by:  dia2dimlem5  36859
  Copyright terms: Public domain W3C validator