Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia1eldmN Structured version   Visualization version   GIF version

Theorem dia1eldmN 36851
Description: The fiducial hyperplane (the largest allowed lattice element) belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dia1eldm.h 𝐻 = (LHyp‘𝐾)
dia1eldm.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia1eldmN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ dom 𝐼)

Proof of Theorem dia1eldmN
StepHypRef Expression
1 eqid 2761 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 dia1eldm.h . . . 4 𝐻 = (LHyp‘𝐾)
31, 2lhpbase 35806 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
43adantl 473 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ (Base‘𝐾))
5 hllat 35172 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
6 eqid 2761 . . . 4 (le‘𝐾) = (le‘𝐾)
71, 6latref 17275 . . 3 ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊(le‘𝐾)𝑊)
85, 3, 7syl2an 495 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊(le‘𝐾)𝑊)
9 dia1eldm.i . . 3 𝐼 = ((DIsoA‘𝐾)‘𝑊)
101, 6, 2, 9diaeldm 36846 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑊 ∈ dom 𝐼 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊(le‘𝐾)𝑊)))
114, 8, 10mpbir2and 995 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ dom 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140   class class class wbr 4805  dom cdm 5267  cfv 6050  Basecbs 16080  lecple 16171  Latclat 17267  HLchlt 35159  LHypclh 35792  DIsoAcdia 36838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-preset 17150  df-poset 17168  df-lat 17268  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-lhyp 35796  df-disoa 36839
This theorem is referenced by:  dia1elN  36864
  Copyright terms: Public domain W3C validator