Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrval Structured version   Visualization version   GIF version

Theorem dgrval 24203
 Description: Value of the degree function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypothesis
Ref Expression
dgrval.1 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgrval (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))

Proof of Theorem dgrval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 plyssc 24175 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3746 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
3 fveq2 6332 . . . . . . 7 (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹))
4 dgrval.1 . . . . . . 7 𝐴 = (coeff‘𝐹)
53, 4syl6eqr 2822 . . . . . 6 (𝑓 = 𝐹 → (coeff‘𝑓) = 𝐴)
65cnveqd 5436 . . . . 5 (𝑓 = 𝐹(coeff‘𝑓) = 𝐴)
76imaeq1d 5606 . . . 4 (𝑓 = 𝐹 → ((coeff‘𝑓) “ (ℂ ∖ {0})) = (𝐴 “ (ℂ ∖ {0})))
87supeq1d 8507 . . 3 (𝑓 = 𝐹 → sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
9 df-dgr 24166 . . 3 deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ))
10 nn0ssre 11497 . . . . 5 0 ⊆ ℝ
11 ltso 10319 . . . . 5 < Or ℝ
12 soss 5188 . . . . 5 (ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0))
1310, 11, 12mp2 9 . . . 4 < Or ℕ0
1413supex 8524 . . 3 sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ) ∈ V
158, 9, 14fvmpt 6424 . 2 (𝐹 ∈ (Poly‘ℂ) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
162, 15syl 17 1 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) = sup((𝐴 “ (ℂ ∖ {0})), ℕ0, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1630   ∈ wcel 2144   ∖ cdif 3718   ⊆ wss 3721  {csn 4314   Or wor 5169  ◡ccnv 5248   “ cima 5252  ‘cfv 6031  supcsup 8501  ℂcc 10135  ℝcr 10136  0cc0 10137   < clt 10275  ℕ0cn0 11493  Polycply 24159  coeffccoe 24161  degcdgr 24162 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-i2m1 10205  ax-1ne0 10206  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-pnf 10277  df-mnf 10278  df-ltxr 10280  df-nn 11222  df-n0 11494  df-ply 24163  df-dgr 24166 This theorem is referenced by:  dgrcl  24208  dgrub  24209  dgrlb  24211  coe11  24228
 Copyright terms: Public domain W3C validator