Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrmul Structured version   Visualization version   GIF version

Theorem dgrmul 24246
 Description: The degree of a product of nonzero polynomials is the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
Assertion
Ref Expression
dgrmul (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹𝑓 · 𝐺)) = (𝑀 + 𝑁))

Proof of Theorem dgrmul
StepHypRef Expression
1 dgradd.1 . . . 4 𝑀 = (deg‘𝐹)
2 dgradd.2 . . . 4 𝑁 = (deg‘𝐺)
31, 2dgrmul2 24245 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹𝑓 · 𝐺)) ≤ (𝑀 + 𝑁))
43ad2ant2r 741 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹𝑓 · 𝐺)) ≤ (𝑀 + 𝑁))
5 plymulcl 24197 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ))
65ad2ant2r 741 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ))
7 dgrcl 24209 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
81, 7syl5eqel 2854 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
98ad2antrr 705 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → 𝑀 ∈ ℕ0)
10 dgrcl 24209 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
112, 10syl5eqel 2854 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
1211ad2antrl 707 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → 𝑁 ∈ ℕ0)
139, 12nn0addcld 11562 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ∈ ℕ0)
14 eqid 2771 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
15 eqid 2771 . . . . . 6 (coeff‘𝐺) = (coeff‘𝐺)
1614, 15, 1, 2coemulhi 24230 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) = (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)))
1716ad2ant2r 741 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) = (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)))
1814coef3 24208 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
1918ad2antrr 705 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (coeff‘𝐹):ℕ0⟶ℂ)
2019, 9ffvelrnd 6505 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐹)‘𝑀) ∈ ℂ)
2115coef3 24208 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (coeff‘𝐺):ℕ0⟶ℂ)
2221ad2antrl 707 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (coeff‘𝐺):ℕ0⟶ℂ)
2322, 12ffvelrnd 6505 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
241, 14dgreq0 24241 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ ((coeff‘𝐹)‘𝑀) = 0))
2524necon3bid 2987 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐹 ≠ 0𝑝 ↔ ((coeff‘𝐹)‘𝑀) ≠ 0))
2625biimpa 462 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → ((coeff‘𝐹)‘𝑀) ≠ 0)
2726adantr 466 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐹)‘𝑀) ≠ 0)
282, 15dgreq0 24241 . . . . . . . 8 (𝐺 ∈ (Poly‘𝑆) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘𝑁) = 0))
2928necon3bid 2987 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (𝐺 ≠ 0𝑝 ↔ ((coeff‘𝐺)‘𝑁) ≠ 0))
3029biimpa 462 . . . . . 6 ((𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((coeff‘𝐺)‘𝑁) ≠ 0)
3130adantl 467 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐺)‘𝑁) ≠ 0)
3220, 23, 27, 31mulne0d 10885 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)) ≠ 0)
3317, 32eqnetrd 3010 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) ≠ 0)
34 eqid 2771 . . . 4 (coeff‘(𝐹𝑓 · 𝐺)) = (coeff‘(𝐹𝑓 · 𝐺))
35 eqid 2771 . . . 4 (deg‘(𝐹𝑓 · 𝐺)) = (deg‘(𝐹𝑓 · 𝐺))
3634, 35dgrub 24210 . . 3 (((𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ) ∧ (𝑀 + 𝑁) ∈ ℕ0 ∧ ((coeff‘(𝐹𝑓 · 𝐺))‘(𝑀 + 𝑁)) ≠ 0) → (𝑀 + 𝑁) ≤ (deg‘(𝐹𝑓 · 𝐺)))
376, 13, 33, 36syl3anc 1476 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ≤ (deg‘(𝐹𝑓 · 𝐺)))
38 dgrcl 24209 . . . . 5 ((𝐹𝑓 · 𝐺) ∈ (Poly‘ℂ) → (deg‘(𝐹𝑓 · 𝐺)) ∈ ℕ0)
396, 38syl 17 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹𝑓 · 𝐺)) ∈ ℕ0)
4039nn0red 11559 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹𝑓 · 𝐺)) ∈ ℝ)
4113nn0red 11559 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ∈ ℝ)
4240, 41letri3d 10385 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((deg‘(𝐹𝑓 · 𝐺)) = (𝑀 + 𝑁) ↔ ((deg‘(𝐹𝑓 · 𝐺)) ≤ (𝑀 + 𝑁) ∧ (𝑀 + 𝑁) ≤ (deg‘(𝐹𝑓 · 𝐺)))))
434, 37, 42mpbir2and 692 1 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹𝑓 · 𝐺)) = (𝑀 + 𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943   class class class wbr 4787  ⟶wf 6026  ‘cfv 6030  (class class class)co 6796   ∘𝑓 cof 7046  ℂcc 10140  0cc0 10142   + caddc 10145   · cmul 10147   ≤ cle 10281  ℕ0cn0 11499  0𝑝c0p 23656  Polycply 24160  coeffccoe 24162  degcdgr 24163 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-0p 23657  df-ply 24164  df-coe 24166  df-dgr 24167 This theorem is referenced by:  dgrmulc  24247  dgrcolem1  24249  plydivlem4  24271  plydiveu  24273  fta1lem  24282  quotcan  24284  vieta1lem1  24285  vieta1lem2  24286
 Copyright terms: Public domain W3C validator