Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrlt Structured version   Visualization version   GIF version

Theorem dgrlt 24241
 Description: Two ways to say that the degree of 𝐹 is strictly less than 𝑁. (Contributed by Mario Carneiro, 25-Jul-2014.)
Hypotheses
Ref Expression
dgreq0.1 𝑁 = (deg‘𝐹)
dgreq0.2 𝐴 = (coeff‘𝐹)
Assertion
Ref Expression
dgrlt ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝𝑁 < 𝑀) ↔ (𝑁𝑀 ∧ (𝐴𝑀) = 0)))

Proof of Theorem dgrlt
StepHypRef Expression
1 simpr 471 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝐹 = 0𝑝)
21fveq2d 6336 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (deg‘𝐹) = (deg‘0𝑝))
3 dgreq0.1 . . . . . 6 𝑁 = (deg‘𝐹)
4 dgr0 24237 . . . . . . 7 (deg‘0𝑝) = 0
54eqcomi 2779 . . . . . 6 0 = (deg‘0𝑝)
62, 3, 53eqtr4g 2829 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝑁 = 0)
7 nn0ge0 11519 . . . . . 6 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
87ad2antlr 698 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 0 ≤ 𝑀)
96, 8eqbrtrd 4806 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝑁𝑀)
101fveq2d 6336 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (coeff‘𝐹) = (coeff‘0𝑝))
11 dgreq0.2 . . . . . . 7 𝐴 = (coeff‘𝐹)
12 coe0 24231 . . . . . . . 8 (coeff‘0𝑝) = (ℕ0 × {0})
1312eqcomi 2779 . . . . . . 7 (ℕ0 × {0}) = (coeff‘0𝑝)
1410, 11, 133eqtr4g 2829 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → 𝐴 = (ℕ0 × {0}))
1514fveq1d 6334 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (𝐴𝑀) = ((ℕ0 × {0})‘𝑀))
16 c0ex 10235 . . . . . . 7 0 ∈ V
1716fvconst2 6612 . . . . . 6 (𝑀 ∈ ℕ0 → ((ℕ0 × {0})‘𝑀) = 0)
1817ad2antlr 698 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → ((ℕ0 × {0})‘𝑀) = 0)
1915, 18eqtrd 2804 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (𝐴𝑀) = 0)
209, 19jca 495 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝐹 = 0𝑝) → (𝑁𝑀 ∧ (𝐴𝑀) = 0))
21 dgrcl 24208 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
223, 21syl5eqel 2853 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
2322nn0red 11553 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℝ)
24 nn0re 11502 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
25 ltle 10327 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 < 𝑀𝑁𝑀))
2623, 24, 25syl2an 575 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀𝑁𝑀))
2726imp 393 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → 𝑁𝑀)
2811, 3dgrub 24209 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ≠ 0) → 𝑀𝑁)
29283expia 1113 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) ≠ 0 → 𝑀𝑁))
30 lenlt 10317 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3124, 23, 30syl2anr 576 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
3229, 31sylibd 229 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) ≠ 0 → ¬ 𝑁 < 𝑀))
3332necon4ad 2961 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀 → (𝐴𝑀) = 0))
3433imp 393 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → (𝐴𝑀) = 0)
3527, 34jca 495 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁 < 𝑀) → (𝑁𝑀 ∧ (𝐴𝑀) = 0))
3620, 35jaodan 938 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝐹 = 0𝑝𝑁 < 𝑀)) → (𝑁𝑀 ∧ (𝐴𝑀) = 0))
37 leloe 10325 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
3823, 24, 37syl2an 575 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → (𝑁𝑀 ↔ (𝑁 < 𝑀𝑁 = 𝑀)))
3938biimpa 462 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ 𝑁𝑀) → (𝑁 < 𝑀𝑁 = 𝑀))
4039adantrr 688 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝑁 < 𝑀𝑁 = 𝑀))
41 fveq2 6332 . . . . . 6 (𝑁 = 𝑀 → (𝐴𝑁) = (𝐴𝑀))
423, 11dgreq0 24240 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
4342ad2antrr 697 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = 0))
44 simprr 748 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐴𝑀) = 0)
4544eqeq2d 2780 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → ((𝐴𝑁) = (𝐴𝑀) ↔ (𝐴𝑁) = 0))
4643, 45bitr4d 271 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐹 = 0𝑝 ↔ (𝐴𝑁) = (𝐴𝑀)))
4741, 46syl5ibr 236 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝑁 = 𝑀𝐹 = 0𝑝))
4847orim2d 947 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → ((𝑁 < 𝑀𝑁 = 𝑀) → (𝑁 < 𝑀𝐹 = 0𝑝)))
4940, 48mpd 15 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝑁 < 𝑀𝐹 = 0𝑝))
5049orcomd 851 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) ∧ (𝑁𝑀 ∧ (𝐴𝑀) = 0)) → (𝐹 = 0𝑝𝑁 < 𝑀))
5136, 50impbida 794 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝐹 = 0𝑝𝑁 < 𝑀) ↔ (𝑁𝑀 ∧ (𝐴𝑀) = 0)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   ∨ wo 826   = wceq 1630   ∈ wcel 2144   ≠ wne 2942  {csn 4314   class class class wbr 4784   × cxp 5247  ‘cfv 6031  ℝcr 10136  0cc0 10137   < clt 10275   ≤ cle 10276  ℕ0cn0 11493  0𝑝c0p 23655  Polycply 24159  coeffccoe 24161  degcdgr 24162 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-rlim 14427  df-sum 14624  df-0p 23656  df-ply 24163  df-coe 24165  df-dgr 24166 This theorem is referenced by:  dgrcolem2  24249  plydivlem4  24270  plydiveu  24272  dgrsub2  38224  elaa2lem  40961
 Copyright terms: Public domain W3C validator