![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dgrle | Structured version Visualization version GIF version |
Description: Given an explicit expression for a polynomial, the degree is at most the highest term in the sum. (Contributed by Mario Carneiro, 24-Jul-2014.) |
Ref | Expression |
---|---|
dgrle.1 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
dgrle.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
dgrle.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
dgrle.4 | ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) |
Ref | Expression |
---|---|
dgrle | ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dgrle.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
2 | dgrle.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | dgrle.3 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) | |
4 | dgrle.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(𝐴 · (𝑧↑𝑘)))) | |
5 | 1, 2, 3, 4 | coeeq2 24043 | . . . . . . . . 9 ⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |
6 | 5 | ad2antrr 762 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))) |
7 | 6 | fveq1d 6231 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((coeff‘𝐹)‘𝑚) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚)) |
8 | nfcv 2793 | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝑚 | |
9 | nfv 1883 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘 ¬ 𝑚 ≤ 𝑁 | |
10 | nffvmpt1 6237 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) | |
11 | 10 | nfeq1 2807 | . . . . . . . . . . 11 ⊢ Ⅎ𝑘((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0 |
12 | 9, 11 | nfim 1865 | . . . . . . . . . 10 ⊢ Ⅎ𝑘(¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
13 | breq1 4688 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑚 → (𝑘 ≤ 𝑁 ↔ 𝑚 ≤ 𝑁)) | |
14 | 13 | notbid 307 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (¬ 𝑘 ≤ 𝑁 ↔ ¬ 𝑚 ≤ 𝑁)) |
15 | fveq2 6229 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑚 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚)) | |
16 | 15 | eqeq1d 2653 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑚 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0)) |
17 | 14, 16 | imbi12d 333 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑚 → ((¬ 𝑘 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0) ↔ (¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0))) |
18 | iffalse 4128 | . . . . . . . . . . . . 13 ⊢ (¬ 𝑘 ≤ 𝑁 → if(𝑘 ≤ 𝑁, 𝐴, 0) = 0) | |
19 | 18 | fveq2d 6233 | . . . . . . . . . . . 12 ⊢ (¬ 𝑘 ≤ 𝑁 → ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = ( I ‘0)) |
20 | 0cn 10070 | . . . . . . . . . . . . 13 ⊢ 0 ∈ ℂ | |
21 | fvi 6294 | . . . . . . . . . . . . 13 ⊢ (0 ∈ ℂ → ( I ‘0) = 0) | |
22 | 20, 21 | ax-mp 5 | . . . . . . . . . . . 12 ⊢ ( I ‘0) = 0 |
23 | 19, 22 | syl6eq 2701 | . . . . . . . . . . 11 ⊢ (¬ 𝑘 ≤ 𝑁 → ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = 0) |
24 | eqid 2651 | . . . . . . . . . . . . 13 ⊢ (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0)) | |
25 | 24 | fvmpt2i 6329 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0))) |
26 | 25 | eqeq1d 2653 | . . . . . . . . . . 11 ⊢ (𝑘 ∈ ℕ0 → (((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0 ↔ ( I ‘if(𝑘 ≤ 𝑁, 𝐴, 0)) = 0)) |
27 | 23, 26 | syl5ibr 236 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℕ0 → (¬ 𝑘 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑘) = 0)) |
28 | 8, 12, 17, 27 | vtoclgaf 3302 | . . . . . . . . 9 ⊢ (𝑚 ∈ ℕ0 → (¬ 𝑚 ≤ 𝑁 → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0)) |
29 | 28 | imp 444 | . . . . . . . 8 ⊢ ((𝑚 ∈ ℕ0 ∧ ¬ 𝑚 ≤ 𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
30 | 29 | adantll 750 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ 𝑁, 𝐴, 0))‘𝑚) = 0) |
31 | 7, 30 | eqtrd 2685 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ ¬ 𝑚 ≤ 𝑁) → ((coeff‘𝐹)‘𝑚) = 0) |
32 | 31 | ex 449 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (¬ 𝑚 ≤ 𝑁 → ((coeff‘𝐹)‘𝑚) = 0)) |
33 | 32 | necon1ad 2840 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
34 | 33 | ralrimiva 2995 | . . 3 ⊢ (𝜑 → ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁)) |
35 | eqid 2651 | . . . . . 6 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
36 | 35 | coef3 24033 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ) |
37 | 1, 36 | syl 17 | . . . 4 ⊢ (𝜑 → (coeff‘𝐹):ℕ0⟶ℂ) |
38 | plyco0 23993 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (coeff‘𝐹):ℕ0⟶ℂ) → (((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) | |
39 | 2, 37, 38 | syl2anc 694 | . . 3 ⊢ (𝜑 → (((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑚 ∈ ℕ0 (((coeff‘𝐹)‘𝑚) ≠ 0 → 𝑚 ≤ 𝑁))) |
40 | 34, 39 | mpbird 247 | . 2 ⊢ (𝜑 → ((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0}) |
41 | eqid 2651 | . . 3 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
42 | 35, 41 | dgrlb 24037 | . 2 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹) “ (ℤ≥‘(𝑁 + 1))) = {0}) → (deg‘𝐹) ≤ 𝑁) |
43 | 1, 2, 40, 42 | syl3anc 1366 | 1 ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ifcif 4119 {csn 4210 class class class wbr 4685 ↦ cmpt 4762 I cid 5052 “ cima 5146 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 0cc0 9974 1c1 9975 + caddc 9977 · cmul 9979 ≤ cle 10113 ℕ0cn0 11330 ℤ≥cuz 11725 ...cfz 12364 ↑cexp 12900 Σcsu 14460 Polycply 23985 coeffccoe 23987 degcdgr 23988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-fl 12633 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-rlim 14264 df-sum 14461 df-0p 23482 df-ply 23989 df-coe 23991 df-dgr 23992 |
This theorem is referenced by: dgreq 24045 0dgr 24046 coeaddlem 24050 coemullem 24051 taylply2 24167 |
Copyright terms: Public domain | W3C validator |