Step | Hyp | Ref
| Expression |
1 | | dgrco.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
2 | | plyf 24174 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) |
3 | 1, 2 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:ℂ⟶ℂ) |
4 | 3 | ffvelrnda 6504 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐺‘𝑥) ∈ ℂ) |
5 | | dgrco.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
6 | | plyf 24174 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
7 | 5, 6 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
8 | 7 | ffvelrnda 6504 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐺‘𝑥) ∈ ℂ) → (𝐹‘(𝐺‘𝑥)) ∈ ℂ) |
9 | 4, 8 | syldan 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐹‘(𝐺‘𝑥)) ∈ ℂ) |
10 | | dgrco.5 |
. . . . . . . . . . . . 13
⊢ 𝐴 = (coeff‘𝐹) |
11 | 10 | coef3 24208 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ) |
12 | 5, 11 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
13 | | dgrco.1 |
. . . . . . . . . . . 12
⊢ 𝑀 = (deg‘𝐹) |
14 | | dgrcl 24209 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
15 | 5, 14 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘𝐹) ∈
ℕ0) |
16 | 13, 15 | syl5eqel 2854 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
17 | 12, 16 | ffvelrnd 6505 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴‘𝑀) ∈ ℂ) |
18 | 17 | adantr 466 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝐴‘𝑀) ∈ ℂ) |
19 | 16 | adantr 466 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑀 ∈
ℕ0) |
20 | 4, 19 | expcld 13215 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝐺‘𝑥)↑𝑀) ∈ ℂ) |
21 | 18, 20 | mulcld 10266 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)) ∈ ℂ) |
22 | 9, 21 | npcand 10602 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) + ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) = (𝐹‘(𝐺‘𝑥))) |
23 | 22 | mpteq2dva 4879 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) + ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘𝑥)))) |
24 | | cnex 10223 |
. . . . . . . 8
⊢ ℂ
∈ V |
25 | 24 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ℂ ∈
V) |
26 | 9, 21 | subcld 10598 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) ∈ ℂ) |
27 | | eqidd 2772 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
28 | | eqidd 2772 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) = (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) |
29 | 25, 26, 21, 27, 28 | offval2 7065 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∘𝑓 + (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ (((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) + ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
30 | 3 | feqmptd 6393 |
. . . . . . 7
⊢ (𝜑 → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺‘𝑥))) |
31 | 7 | feqmptd 6393 |
. . . . . . 7
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℂ ↦ (𝐹‘𝑦))) |
32 | | fveq2 6333 |
. . . . . . 7
⊢ (𝑦 = (𝐺‘𝑥) → (𝐹‘𝑦) = (𝐹‘(𝐺‘𝑥))) |
33 | 4, 30, 31, 32 | fmptco 6542 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘ 𝐺) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘𝑥)))) |
34 | 23, 29, 33 | 3eqtr4rd 2816 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘ 𝐺) = ((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∘𝑓 + (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
35 | 34 | fveq2d 6337 |
. . . 4
⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∘𝑓 + (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))))) |
36 | 35 | adantr 466 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝐹 ∘ 𝐺)) = (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∘𝑓 + (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))))) |
37 | 25, 9, 21, 33, 28 | offval2 7065 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ∘ 𝐺) ∘𝑓 − (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
38 | | plyssc 24176 |
. . . . . . . . 9
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
39 | 38, 5 | sseldi 3750 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈
(Poly‘ℂ)) |
40 | 38, 1 | sseldi 3750 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈
(Poly‘ℂ)) |
41 | | addcl 10224 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 + 𝑤) ∈ ℂ) |
42 | 41 | adantl 467 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 + 𝑤) ∈ ℂ) |
43 | | mulcl 10226 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ) |
44 | 43 | adantl 467 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ) |
45 | 39, 40, 42, 44 | plyco 24217 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘ 𝐺) ∈
(Poly‘ℂ)) |
46 | | eqidd 2772 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) = (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) |
47 | | oveq1 6803 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐺‘𝑥) → (𝑦↑𝑀) = ((𝐺‘𝑥)↑𝑀)) |
48 | 47 | oveq2d 6812 |
. . . . . . . . 9
⊢ (𝑦 = (𝐺‘𝑥) → ((𝐴‘𝑀) · (𝑦↑𝑀)) = ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) |
49 | 4, 30, 46, 48 | fmptco 6542 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) |
50 | | ssid 3773 |
. . . . . . . . . . 11
⊢ ℂ
⊆ ℂ |
51 | 50 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℂ ⊆
ℂ) |
52 | | eqid 2771 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) = (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) |
53 | 52 | ply1term 24180 |
. . . . . . . . . 10
⊢ ((ℂ
⊆ ℂ ∧ (𝐴‘𝑀) ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∈
(Poly‘ℂ)) |
54 | 51, 17, 16, 53 | syl3anc 1476 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∈
(Poly‘ℂ)) |
55 | 54, 40, 42, 44 | plyco 24217 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∘ 𝐺) ∈
(Poly‘ℂ)) |
56 | 49, 55 | eqeltrrd 2851 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) ∈
(Poly‘ℂ)) |
57 | | plysubcl 24198 |
. . . . . . 7
⊢ (((𝐹 ∘ 𝐺) ∈ (Poly‘ℂ) ∧ (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) ∈ (Poly‘ℂ)) →
((𝐹 ∘ 𝐺) ∘𝑓
− (𝑥 ∈ ℂ
↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∈
(Poly‘ℂ)) |
58 | 45, 56, 57 | syl2anc 573 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ∘ 𝐺) ∘𝑓 − (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∈
(Poly‘ℂ)) |
59 | 37, 58 | eqeltrrd 2851 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∈
(Poly‘ℂ)) |
60 | 59 | adantr 466 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∈
(Poly‘ℂ)) |
61 | 56 | adantr 466 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) ∈
(Poly‘ℂ)) |
62 | | dgrco.7 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 = (𝐷 + 1)) |
63 | | dgrco.6 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 ∈
ℕ0) |
64 | | nn0p1nn 11539 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ ℕ0
→ (𝐷 + 1) ∈
ℕ) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐷 + 1) ∈ ℕ) |
66 | 62, 65 | eqeltrd 2850 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℕ) |
67 | 66 | nngt0d 11270 |
. . . . . . . . 9
⊢ (𝜑 → 0 < 𝑀) |
68 | | fveq2 6333 |
. . . . . . . . . . 11
⊢ ((𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 →
(deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) =
(deg‘0𝑝)) |
69 | | dgr0 24238 |
. . . . . . . . . . 11
⊢
(deg‘0𝑝) = 0 |
70 | 68, 69 | syl6eq 2821 |
. . . . . . . . . 10
⊢ ((𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 →
(deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) = 0) |
71 | 70 | breq1d 4797 |
. . . . . . . . 9
⊢ ((𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 →
((deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀 ↔ 0 < 𝑀)) |
72 | 67, 71 | syl5ibrcom 237 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 →
(deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀)) |
73 | | idd 24 |
. . . . . . . 8
⊢ (𝜑 → ((deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀 → (deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀)) |
74 | | eqid 2771 |
. . . . . . . . . . . 12
⊢
(deg‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) |
75 | 13, 74 | dgrsub 24248 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∈ (Poly‘ℂ)) →
(deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), 𝑀)) |
76 | 39, 54, 75 | syl2anc 573 |
. . . . . . . . . 10
⊢ (𝜑 → (deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), 𝑀)) |
77 | 66 | nnne0d 11271 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ≠ 0) |
78 | 13, 10 | dgreq0 24241 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ (𝐴‘𝑀) = 0)) |
79 | 5, 78 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹 = 0𝑝 ↔ (𝐴‘𝑀) = 0)) |
80 | | fveq2 6333 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
(deg‘0𝑝)) |
81 | 80, 69 | syl6eq 2821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 = 0𝑝 →
(deg‘𝐹) =
0) |
82 | 13, 81 | syl5eq 2817 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 = 0𝑝 →
𝑀 = 0) |
83 | 79, 82 | syl6bir 244 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐴‘𝑀) = 0 → 𝑀 = 0)) |
84 | 83 | necon3d 2964 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 ≠ 0 → (𝐴‘𝑀) ≠ 0)) |
85 | 77, 84 | mpd 15 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴‘𝑀) ≠ 0) |
86 | 52 | dgr1term 24236 |
. . . . . . . . . . . . 13
⊢ (((𝐴‘𝑀) ∈ ℂ ∧ (𝐴‘𝑀) ≠ 0 ∧ 𝑀 ∈ ℕ0) →
(deg‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 𝑀) |
87 | 17, 85, 16, 86 | syl3anc 1476 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 𝑀) |
88 | 87 | ifeq1d 4244 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), 𝑀) = if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), 𝑀, 𝑀)) |
89 | | ifid 4265 |
. . . . . . . . . . 11
⊢ if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), 𝑀, 𝑀) = 𝑀 |
90 | 88, 89 | syl6eq 2821 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝑀 ≤ (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), (deg‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))), 𝑀) = 𝑀) |
91 | 76, 90 | breqtrd 4813 |
. . . . . . . . 9
⊢ (𝜑 → (deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝑀) |
92 | | eqid 2771 |
. . . . . . . . . . . . 13
⊢
(coeff‘(𝑦
∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) |
93 | 10, 92 | coesub 24233 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∈ (Poly‘ℂ)) →
(coeff‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) = (𝐴 ∘𝑓 −
(coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))) |
94 | 39, 54, 93 | syl2anc 573 |
. . . . . . . . . . 11
⊢ (𝜑 → (coeff‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) = (𝐴 ∘𝑓 −
(coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))) |
95 | 94 | fveq1d 6335 |
. . . . . . . . . 10
⊢ (𝜑 → ((coeff‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀) = ((𝐴 ∘𝑓 −
(coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀)) |
96 | 12 | ffnd 6185 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 Fn ℕ0) |
97 | 92 | coef3 24208 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∈ (Poly‘ℂ) →
(coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))):ℕ0⟶ℂ) |
98 | 54, 97 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))):ℕ0⟶ℂ) |
99 | 98 | ffnd 6185 |
. . . . . . . . . . . 12
⊢ (𝜑 → (coeff‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) Fn
ℕ0) |
100 | | nn0ex 11505 |
. . . . . . . . . . . . 13
⊢
ℕ0 ∈ V |
101 | 100 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℕ0 ∈
V) |
102 | | inidm 3971 |
. . . . . . . . . . . 12
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 |
103 | | eqidd 2772 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ0) → (𝐴‘𝑀) = (𝐴‘𝑀)) |
104 | 52 | coe1term 24235 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴‘𝑀) ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0)
→ ((coeff‘(𝑦
∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))‘𝑀) = if(𝑀 = 𝑀, (𝐴‘𝑀), 0)) |
105 | 17, 16, 16, 104 | syl3anc 1476 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))‘𝑀) = if(𝑀 = 𝑀, (𝐴‘𝑀), 0)) |
106 | | eqid 2771 |
. . . . . . . . . . . . . . 15
⊢ 𝑀 = 𝑀 |
107 | 106 | iftruei 4233 |
. . . . . . . . . . . . . 14
⊢ if(𝑀 = 𝑀, (𝐴‘𝑀), 0) = (𝐴‘𝑀) |
108 | 105, 107 | syl6eq 2821 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((coeff‘(𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))‘𝑀) = (𝐴‘𝑀)) |
109 | 108 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ0) →
((coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))‘𝑀) = (𝐴‘𝑀)) |
110 | 96, 99, 101, 101, 102, 103, 109 | ofval 7057 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑀 ∈ ℕ0) → ((𝐴 ∘𝑓
− (coeff‘(𝑦
∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀) = ((𝐴‘𝑀) − (𝐴‘𝑀))) |
111 | 16, 110 | mpdan 667 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ∘𝑓 −
(coeff‘(𝑦 ∈
ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀) = ((𝐴‘𝑀) − (𝐴‘𝑀))) |
112 | 17 | subidd 10586 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴‘𝑀) − (𝐴‘𝑀)) = 0) |
113 | 95, 111, 112 | 3eqtrd 2809 |
. . . . . . . . 9
⊢ (𝜑 → ((coeff‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀) = 0) |
114 | | plysubcl 24198 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘ℂ)
∧ (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))) ∈ (Poly‘ℂ)) →
(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∈
(Poly‘ℂ)) |
115 | 39, 54, 114 | syl2anc 573 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∈
(Poly‘ℂ)) |
116 | | eqid 2771 |
. . . . . . . . . . 11
⊢
(deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) = (deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) |
117 | | eqid 2771 |
. . . . . . . . . . 11
⊢
(coeff‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) = (coeff‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) |
118 | 116, 117 | dgrlt 24242 |
. . . . . . . . . 10
⊢ (((𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∈ (Poly‘ℂ) ∧ 𝑀 ∈ ℕ0)
→ (((𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 ∨
(deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀) ↔ ((deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝑀 ∧ ((coeff‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀) = 0))) |
119 | 115, 16, 118 | syl2anc 573 |
. . . . . . . . 9
⊢ (𝜑 → (((𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 ∨
(deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀) ↔ ((deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝑀 ∧ ((coeff‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))‘𝑀) = 0))) |
120 | 91, 113, 119 | mpbir2and 692 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = 0𝑝 ∨
(deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀)) |
121 | 72, 73, 120 | mpjaod 849 |
. . . . . . 7
⊢ (𝜑 → (deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀) |
122 | 121 | adantr 466 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀) |
123 | | dgrcl 24209 |
. . . . . . . . . 10
⊢ ((𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∈ (Poly‘ℂ) →
(deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ∈
ℕ0) |
124 | 115, 123 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ∈
ℕ0) |
125 | 124 | nn0red 11559 |
. . . . . . . 8
⊢ (𝜑 → (deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ∈ ℝ) |
126 | 125 | adantr 466 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ∈ ℝ) |
127 | 16 | nn0red 11559 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℝ) |
128 | 127 | adantr 466 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ) |
129 | | nnre 11233 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
130 | 129 | adantl 467 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ) |
131 | | nngt0 11255 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
132 | 131 | adantl 467 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 0 < 𝑁) |
133 | | ltmul1 11079 |
. . . . . . 7
⊢
(((deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀 ↔ ((deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁) < (𝑀 · 𝑁))) |
134 | 126, 128,
130, 132, 133 | syl112anc 1480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < 𝑀 ↔ ((deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁) < (𝑀 · 𝑁))) |
135 | 122, 134 | mpbid 222 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → ((deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁) < (𝑀 · 𝑁)) |
136 | 7 | ffvelrnda 6504 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝐹‘𝑦) ∈ ℂ) |
137 | 17 | adantr 466 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝐴‘𝑀) ∈ ℂ) |
138 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℂ → 𝑦 ∈
ℂ) |
139 | | expcl 13085 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝑦↑𝑀) ∈
ℂ) |
140 | 138, 16, 139 | syl2anr 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑𝑀) ∈ ℂ) |
141 | 137, 140 | mulcld 10266 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → ((𝐴‘𝑀) · (𝑦↑𝑀)) ∈ ℂ) |
142 | 25, 136, 141, 31, 46 | offval2 7065 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) = (𝑦 ∈ ℂ ↦ ((𝐹‘𝑦) − ((𝐴‘𝑀) · (𝑦↑𝑀))))) |
143 | 32, 48 | oveq12d 6814 |
. . . . . . . . 9
⊢ (𝑦 = (𝐺‘𝑥) → ((𝐹‘𝑦) − ((𝐴‘𝑀) · (𝑦↑𝑀))) = ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) |
144 | 4, 30, 142, 143 | fmptco 6542 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
145 | 144 | fveq2d 6337 |
. . . . . . 7
⊢ (𝜑 → (deg‘((𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺)) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))))) |
146 | 121, 62 | breqtrd 4813 |
. . . . . . . . 9
⊢ (𝜑 → (deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < (𝐷 + 1)) |
147 | | nn0leltp1 11643 |
. . . . . . . . . 10
⊢
(((deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ∈ ℕ0 ∧ 𝐷 ∈ ℕ0)
→ ((deg‘(𝐹
∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝐷 ↔ (deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < (𝐷 + 1))) |
148 | 124, 63, 147 | syl2anc 573 |
. . . . . . . . 9
⊢ (𝜑 → ((deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝐷 ↔ (deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) < (𝐷 + 1))) |
149 | 146, 148 | mpbird 247 |
. . . . . . . 8
⊢ (𝜑 → (deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝐷) |
150 | | fveq2 6333 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → (deg‘𝑓) = (deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))))) |
151 | 150 | breq1d 4797 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → ((deg‘𝑓) ≤ 𝐷 ↔ (deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝐷)) |
152 | | coeq1 5417 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → (𝑓 ∘ 𝐺) = ((𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺)) |
153 | 152 | fveq2d 6337 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → (deg‘(𝑓 ∘ 𝐺)) = (deg‘((𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺))) |
154 | 150 | oveq1d 6811 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → ((deg‘𝑓) · 𝑁) = ((deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁)) |
155 | 153, 154 | eqeq12d 2786 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → ((deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘((𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁))) |
156 | 151, 155 | imbi12d 333 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) → (((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝐷 → (deg‘((𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁)))) |
157 | | dgrco.8 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝐷 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) |
158 | 156, 157,
115 | rspcdva 3466 |
. . . . . . . 8
⊢ (𝜑 → ((deg‘(𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) ≤ 𝐷 → (deg‘((𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁))) |
159 | 149, 158 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → (deg‘((𝐹 ∘𝑓
− (𝑦 ∈ ℂ
↦ ((𝐴‘𝑀) · (𝑦↑𝑀)))) ∘ 𝐺)) = ((deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁)) |
160 | 145, 159 | eqtr3d 2807 |
. . . . . 6
⊢ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) = ((deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁)) |
161 | 160 | adantr 466 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) = ((deg‘(𝐹 ∘𝑓 − (𝑦 ∈ ℂ ↦ ((𝐴‘𝑀) · (𝑦↑𝑀))))) · 𝑁)) |
162 | | fconstmpt 5302 |
. . . . . . . . . . 11
⊢ (ℂ
× {(𝐴‘𝑀)}) = (𝑥 ∈ ℂ ↦ (𝐴‘𝑀)) |
163 | 162 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ × {(𝐴‘𝑀)}) = (𝑥 ∈ ℂ ↦ (𝐴‘𝑀))) |
164 | | eqidd 2772 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)) = (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) |
165 | 25, 18, 20, 163, 164 | offval2 7065 |
. . . . . . . . 9
⊢ (𝜑 → ((ℂ × {(𝐴‘𝑀)}) ∘𝑓 ·
(𝑥 ∈ ℂ ↦
((𝐺‘𝑥)↑𝑀))) = (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) |
166 | 165 | fveq2d 6337 |
. . . . . . . 8
⊢ (𝜑 → (deg‘((ℂ
× {(𝐴‘𝑀)}) ∘𝑓
· (𝑥 ∈ ℂ
↦ ((𝐺‘𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
167 | | eqidd 2772 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑𝑀)) = (𝑦 ∈ ℂ ↦ (𝑦↑𝑀))) |
168 | 4, 30, 167, 47 | fmptco 6542 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑦 ∈ ℂ ↦ (𝑦↑𝑀)) ∘ 𝐺) = (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) |
169 | | 1cnd 10262 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℂ) |
170 | | plypow 24181 |
. . . . . . . . . . . 12
⊢ ((ℂ
⊆ ℂ ∧ 1 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑦 ∈ ℂ ↦ (𝑦↑𝑀)) ∈
(Poly‘ℂ)) |
171 | 51, 169, 16, 170 | syl3anc 1476 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑𝑀)) ∈
(Poly‘ℂ)) |
172 | 171, 40, 42, 44 | plyco 24217 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑦 ∈ ℂ ↦ (𝑦↑𝑀)) ∘ 𝐺) ∈
(Poly‘ℂ)) |
173 | 168, 172 | eqeltrrd 2851 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)) ∈
(Poly‘ℂ)) |
174 | | dgrmulc 24247 |
. . . . . . . . 9
⊢ (((𝐴‘𝑀) ∈ ℂ ∧ (𝐴‘𝑀) ≠ 0 ∧ (𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)) ∈ (Poly‘ℂ)) →
(deg‘((ℂ × {(𝐴‘𝑀)}) ∘𝑓 ·
(𝑥 ∈ ℂ ↦
((𝐺‘𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)))) |
175 | 17, 85, 173, 174 | syl3anc 1476 |
. . . . . . . 8
⊢ (𝜑 → (deg‘((ℂ
× {(𝐴‘𝑀)}) ∘𝑓
· (𝑥 ∈ ℂ
↦ ((𝐺‘𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)))) |
176 | 166, 175 | eqtr3d 2807 |
. . . . . . 7
⊢ (𝜑 → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)))) |
177 | 176 | adantr 466 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀)))) |
178 | | dgrco.2 |
. . . . . . 7
⊢ 𝑁 = (deg‘𝐺) |
179 | 66 | adantr 466 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ) |
180 | | simpr 471 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) |
181 | 1 | adantr 466 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → 𝐺 ∈ (Poly‘𝑆)) |
182 | 178, 179,
180, 181 | dgrcolem1 24249 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐺‘𝑥)↑𝑀))) = (𝑀 · 𝑁)) |
183 | 177, 182 | eqtrd 2805 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (𝑀 · 𝑁)) |
184 | 135, 161,
183 | 3brtr4d 4819 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) < (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
185 | | eqid 2771 |
. . . . 5
⊢
(deg‘(𝑥 ∈
ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
186 | | eqid 2771 |
. . . . 5
⊢
(deg‘(𝑥 ∈
ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) |
187 | 185, 186 | dgradd2 24244 |
. . . 4
⊢ (((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∈ (Poly‘ℂ) ∧
(𝑥 ∈ ℂ ↦
((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))) ∈ (Poly‘ℂ) ∧
(deg‘(𝑥 ∈
ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) < (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∘𝑓 + (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
188 | 60, 61, 184, 187 | syl3anc 1476 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘((𝑥 ∈ ℂ ↦ ((𝐹‘(𝐺‘𝑥)) − ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀)))) ∘𝑓 + (𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) = (deg‘(𝑥 ∈ ℂ ↦ ((𝐴‘𝑀) · ((𝐺‘𝑥)↑𝑀))))) |
189 | 36, 188, 183 | 3eqtrd 2809 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) |
190 | | 0cn 10238 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
191 | | ffvelrn 6502 |
. . . . . . . 8
⊢ ((𝐺:ℂ⟶ℂ ∧ 0
∈ ℂ) → (𝐺‘0) ∈ ℂ) |
192 | 3, 190, 191 | sylancl 574 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘0) ∈ ℂ) |
193 | 7, 192 | ffvelrnd 6505 |
. . . . . 6
⊢ (𝜑 → (𝐹‘(𝐺‘0)) ∈ ℂ) |
194 | | 0dgr 24221 |
. . . . . 6
⊢ ((𝐹‘(𝐺‘0)) ∈ ℂ →
(deg‘(ℂ × {(𝐹‘(𝐺‘0))})) = 0) |
195 | 193, 194 | syl 17 |
. . . . 5
⊢ (𝜑 → (deg‘(ℂ
× {(𝐹‘(𝐺‘0))})) =
0) |
196 | 16 | nn0cnd 11560 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℂ) |
197 | 196 | mul01d 10441 |
. . . . 5
⊢ (𝜑 → (𝑀 · 0) = 0) |
198 | 195, 197 | eqtr4d 2808 |
. . . 4
⊢ (𝜑 → (deg‘(ℂ
× {(𝐹‘(𝐺‘0))})) = (𝑀 · 0)) |
199 | 198 | adantr 466 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 0) → (deg‘(ℂ ×
{(𝐹‘(𝐺‘0))})) = (𝑀 · 0)) |
200 | 192 | ad2antrr 705 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑁 = 0) ∧ 𝑥 ∈ ℂ) → (𝐺‘0) ∈ ℂ) |
201 | | simpr 471 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑁 = 0) → 𝑁 = 0) |
202 | 178, 201 | syl5eqr 2819 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 = 0) → (deg‘𝐺) = 0) |
203 | | 0dgrb 24222 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (Poly‘𝑆) → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)}))) |
204 | 1, 203 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)}))) |
205 | 204 | adantr 466 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑁 = 0) → ((deg‘𝐺) = 0 ↔ 𝐺 = (ℂ × {(𝐺‘0)}))) |
206 | 202, 205 | mpbid 222 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐺 = (ℂ × {(𝐺‘0)})) |
207 | | fconstmpt 5302 |
. . . . . . 7
⊢ (ℂ
× {(𝐺‘0)}) =
(𝑥 ∈ ℂ ↦
(𝐺‘0)) |
208 | 206, 207 | syl6eq 2821 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐺 = (𝑥 ∈ ℂ ↦ (𝐺‘0))) |
209 | 31 | adantr 466 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑁 = 0) → 𝐹 = (𝑦 ∈ ℂ ↦ (𝐹‘𝑦))) |
210 | | fveq2 6333 |
. . . . . 6
⊢ (𝑦 = (𝐺‘0) → (𝐹‘𝑦) = (𝐹‘(𝐺‘0))) |
211 | 200, 208,
209, 210 | fmptco 6542 |
. . . . 5
⊢ ((𝜑 ∧ 𝑁 = 0) → (𝐹 ∘ 𝐺) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘0)))) |
212 | | fconstmpt 5302 |
. . . . 5
⊢ (ℂ
× {(𝐹‘(𝐺‘0))}) = (𝑥 ∈ ℂ ↦ (𝐹‘(𝐺‘0))) |
213 | 211, 212 | syl6eqr 2823 |
. . . 4
⊢ ((𝜑 ∧ 𝑁 = 0) → (𝐹 ∘ 𝐺) = (ℂ × {(𝐹‘(𝐺‘0))})) |
214 | 213 | fveq2d 6337 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 0) → (deg‘(𝐹 ∘ 𝐺)) = (deg‘(ℂ × {(𝐹‘(𝐺‘0))}))) |
215 | 201 | oveq2d 6812 |
. . 3
⊢ ((𝜑 ∧ 𝑁 = 0) → (𝑀 · 𝑁) = (𝑀 · 0)) |
216 | 199, 214,
215 | 3eqtr4d 2815 |
. 2
⊢ ((𝜑 ∧ 𝑁 = 0) → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) |
217 | | dgrcl 24209 |
. . . . 5
⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈
ℕ0) |
218 | 1, 217 | syl 17 |
. . . 4
⊢ (𝜑 → (deg‘𝐺) ∈
ℕ0) |
219 | 178, 218 | syl5eqel 2854 |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
220 | | elnn0 11501 |
. . 3
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
221 | 219, 220 | sylib 208 |
. 2
⊢ (𝜑 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
222 | 189, 216,
221 | mpjaodan 943 |
1
⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) |