![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dgraa0p | Structured version Visualization version GIF version |
Description: A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
Ref | Expression |
---|---|
dgraa0p | ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1230 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) < (degAA‘𝐴)) | |
2 | simpl2 1228 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ (Poly‘ℚ)) | |
3 | dgrcl 24208 | . . . . . . . . 9 ⊢ (𝑃 ∈ (Poly‘ℚ) → (deg‘𝑃) ∈ ℕ0) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℕ0) |
5 | 4 | nn0red 11553 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (deg‘𝑃) ∈ ℝ) |
6 | simpl1 1226 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → 𝐴 ∈ 𝔸) | |
7 | dgraacl 38235 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) ∈ ℕ) | |
8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA‘𝐴) ∈ ℕ) |
9 | 8 | nnred 11236 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → (degAA‘𝐴) ∈ ℝ) |
10 | 5, 9 | ltnled 10385 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((deg‘𝑃) < (degAA‘𝐴) ↔ ¬ (degAA‘𝐴) ≤ (deg‘𝑃))) |
11 | 1, 10 | mpbid 222 | . . . . 5 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (degAA‘𝐴) ≤ (deg‘𝑃)) |
12 | simpl2 1228 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝑃 ∈ (Poly‘ℚ)) | |
13 | simprl 746 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝑃 ≠ 0𝑝) | |
14 | simpl1 1226 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝐴 ∈ 𝔸) | |
15 | aacn 24291 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → 𝐴 ∈ ℂ) |
17 | simprr 748 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → (𝑃‘𝐴) = 0) | |
18 | dgraaub 38237 | . . . . . . 7 ⊢ (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) | |
19 | 12, 13, 16, 17, 18 | syl22anc 1476 | . . . . . 6 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ (𝑃 ≠ 0𝑝 ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) |
20 | 19 | expr 444 | . . . . 5 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ((𝑃‘𝐴) = 0 → (degAA‘𝐴) ≤ (deg‘𝑃))) |
21 | 11, 20 | mtod 189 | . . . 4 ⊢ (((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) ∧ 𝑃 ≠ 0𝑝) → ¬ (𝑃‘𝐴) = 0) |
22 | 21 | ex 397 | . . 3 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → (𝑃 ≠ 0𝑝 → ¬ (𝑃‘𝐴) = 0)) |
23 | 22 | necon4ad 2961 | . 2 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 → 𝑃 = 0𝑝)) |
24 | 0pval 23657 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (0𝑝‘𝐴) = 0) | |
25 | 15, 24 | syl 17 | . . . 4 ⊢ (𝐴 ∈ 𝔸 → (0𝑝‘𝐴) = 0) |
26 | fveq1 6331 | . . . . 5 ⊢ (𝑃 = 0𝑝 → (𝑃‘𝐴) = (0𝑝‘𝐴)) | |
27 | 26 | eqeq1d 2772 | . . . 4 ⊢ (𝑃 = 0𝑝 → ((𝑃‘𝐴) = 0 ↔ (0𝑝‘𝐴) = 0)) |
28 | 25, 27 | syl5ibrcom 237 | . . 3 ⊢ (𝐴 ∈ 𝔸 → (𝑃 = 0𝑝 → (𝑃‘𝐴) = 0)) |
29 | 28 | 3ad2ant1 1126 | . 2 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → (𝑃 = 0𝑝 → (𝑃‘𝐴) = 0)) |
30 | 23, 29 | impbid 202 | 1 ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 class class class wbr 4784 ‘cfv 6031 ℂcc 10135 0cc0 10137 < clt 10275 ≤ cle 10276 ℕcn 11221 ℕ0cn0 11493 ℚcq 11990 0𝑝c0p 23655 Polycply 24159 degcdgr 24162 𝔸caa 24288 degAAcdgraa 38229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-z 11579 df-uz 11888 df-q 11991 df-rp 12035 df-fz 12533 df-fzo 12673 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-clim 14426 df-rlim 14427 df-sum 14624 df-0p 23656 df-ply 24163 df-coe 24165 df-dgr 24166 df-aa 24289 df-dgraa 38231 |
This theorem is referenced by: mpaaeu 38239 |
Copyright terms: Public domain | W3C validator |