Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfwe2 Structured version   Visualization version   GIF version

Theorem dfwe2 7023
 Description: Alternate definition of well-ordering. Definition 6.24(2) of [TakeutiZaring] p. 30. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
dfwe2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝐴,𝑦

Proof of Theorem dfwe2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-we 5104 . 2 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
2 df-so 5065 . . . 4 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
3 simpr 476 . . . . 5 ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
4 ax-1 6 . . . . . . . . . . . . . . 15 (𝑥𝑅𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
54a1i 11 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥𝑅𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
6 fr2nr 5121 . . . . . . . . . . . . . . . . 17 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑥))
763adantr3 1242 . . . . . . . . . . . . . . . 16 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑥))
8 breq2 4689 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
98anbi2d 740 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧)))
109notbid 307 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (¬ (𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ¬ (𝑥𝑅𝑦𝑦𝑅𝑧)))
117, 10syl5ibcom 235 . . . . . . . . . . . . . . 15 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥 = 𝑧 → ¬ (𝑥𝑅𝑦𝑦𝑅𝑧)))
12 pm2.21 120 . . . . . . . . . . . . . . 15 (¬ (𝑥𝑅𝑦𝑦𝑅𝑧) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
1311, 12syl6 35 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑥 = 𝑧 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
14 fr3nr 7021 . . . . . . . . . . . . . . . . 17 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥))
15 df-3an 1056 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥) ↔ ((𝑥𝑅𝑦𝑦𝑅𝑧) ∧ 𝑧𝑅𝑥))
1615biimpri 218 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑅𝑦𝑦𝑅𝑧) ∧ 𝑧𝑅𝑥) → (𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥))
1716ancoms 468 . . . . . . . . . . . . . . . . 17 ((𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → (𝑥𝑅𝑦𝑦𝑅𝑧𝑧𝑅𝑥))
1814, 17nsyl 135 . . . . . . . . . . . . . . . 16 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ (𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)))
1918pm2.21d 118 . . . . . . . . . . . . . . 15 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑧𝑅𝑥 ∧ (𝑥𝑅𝑦𝑦𝑅𝑧)) → 𝑥𝑅𝑧))
2019expd 451 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → (𝑧𝑅𝑥 → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
215, 13, 203jaod 1432 . . . . . . . . . . . . 13 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
22 frirr 5120 . . . . . . . . . . . . . 14 ((𝑅 Fr 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
23223ad2antr1 1246 . . . . . . . . . . . . 13 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ¬ 𝑥𝑅𝑥)
2421, 23jctild 565 . . . . . . . . . . . 12 ((𝑅 Fr 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
2524ex 449 . . . . . . . . . . 11 (𝑅 Fr 𝐴 → ((𝑥𝐴𝑦𝐴𝑧𝐴) → ((𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
2625a2d 29 . . . . . . . . . 10 (𝑅 Fr 𝐴 → (((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)) → ((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
2726alimdv 1885 . . . . . . . . 9 (𝑅 Fr 𝐴 → (∀𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)) → ∀𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
28272alimdv 1887 . . . . . . . 8 (𝑅 Fr 𝐴 → (∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)) → ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))))
29 r3al 2969 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)))
30 r3al 2969 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝑦𝑧((𝑥𝐴𝑦𝐴𝑧𝐴) → (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
3128, 29, 303imtr4g 285 . . . . . . 7 (𝑅 Fr 𝐴 → (∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥) → ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))))
32 ralidm 4108 . . . . . . . . 9 (∀𝑦𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
33 breq2 4689 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑥𝑅𝑦𝑥𝑅𝑧))
34 equequ2 1999 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
35 breq1 4688 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑅𝑥𝑧𝑅𝑥))
3633, 34, 353orbi123d 1438 . . . . . . . . . . 11 (𝑦 = 𝑧 → ((𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥)))
3736cbvralv 3201 . . . . . . . . . 10 (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
3837ralbii 3009 . . . . . . . . 9 (∀𝑦𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
3932, 38bitr3i 266 . . . . . . . 8 (∀𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
4039ralbii 3009 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴 (𝑥𝑅𝑧𝑥 = 𝑧𝑧𝑅𝑥))
41 df-po 5064 . . . . . . 7 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
4231, 40, 413imtr4g 285 . . . . . 6 (𝑅 Fr 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → 𝑅 Po 𝐴))
4342ancrd 576 . . . . 5 (𝑅 Fr 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
443, 43impbid2 216 . . . 4 (𝑅 Fr 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
452, 44syl5bb 272 . . 3 (𝑅 Fr 𝐴 → (𝑅 Or 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
4645pm5.32i 670 . 2 ((𝑅 Fr 𝐴𝑅 Or 𝐴) ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
471, 46bitri 264 1 (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∨ w3o 1053   ∧ w3a 1054  ∀wal 1521   ∈ wcel 2030  ∀wral 2941   class class class wbr 4685   Po wpo 5062   Or wor 5063   Fr wfr 5099   We wwe 5101 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-po 5064  df-so 5065  df-fr 5102  df-we 5104 This theorem is referenced by:  ordon  7024  f1oweALT  7194  dford2  8555  fpwwe2lem12  9501  fpwwe2lem13  9502  dfon2  31821  fnwe2  37940
 Copyright terms: Public domain W3C validator