Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfvd2ir Structured version   Visualization version   GIF version

Theorem dfvd2ir 39323
Description: Right-to-left inference form of dfvd2 39316. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfvd2ir.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
dfvd2ir (   𝜑   ,   𝜓   ▶   𝜒   )

Proof of Theorem dfvd2ir
StepHypRef Expression
1 dfvd2ir.1 . 2 (𝜑 → (𝜓𝜒))
2 dfvd2 39316 . 2 ((   𝜑   ,   𝜓   ▶   𝜒   ) ↔ (𝜑 → (𝜓𝜒)))
31, 2mpbir 221 1 (   𝜑   ,   𝜓   ▶   𝜒   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd2 39314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-vd2 39315
This theorem is referenced by:  vd02  39344  vd12  39346  in2an  39354  in3  39355  idn2  39359  gen21  39365  gen21nv  39366  gen22  39368  e2  39377  e222  39382
  Copyright terms: Public domain W3C validator