![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfuzi | Structured version Visualization version GIF version |
Description: An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 11225 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.) |
Ref | Expression |
---|---|
dfuzi.1 | ⊢ 𝑁 ∈ ℤ |
Ref | Expression |
---|---|
dfuzi | ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 4646 | . . 3 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ 𝑥)) | |
2 | dfuzi.1 | . . . 4 ⊢ 𝑁 ∈ ℤ | |
3 | 2 | peano5uzi 11658 | . . 3 ⊢ ((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ 𝑥) |
4 | 1, 3 | mpgbir 1875 | . 2 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
5 | 2 | zrei 11575 | . . . . . 6 ⊢ 𝑁 ∈ ℝ |
6 | 5 | leidi 10754 | . . . . 5 ⊢ 𝑁 ≤ 𝑁 |
7 | breq2 4808 | . . . . . 6 ⊢ (𝑧 = 𝑁 → (𝑁 ≤ 𝑧 ↔ 𝑁 ≤ 𝑁)) | |
8 | 7 | elrab 3504 | . . . . 5 ⊢ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ↔ (𝑁 ∈ ℤ ∧ 𝑁 ≤ 𝑁)) |
9 | 2, 6, 8 | mpbir2an 993 | . . . 4 ⊢ 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
10 | peano2uz2 11657 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) | |
11 | 2, 10 | mpan 708 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) |
12 | 11 | rgen 3060 | . . . 4 ⊢ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
13 | zex 11578 | . . . . . 6 ⊢ ℤ ∈ V | |
14 | 13 | rabex 4964 | . . . . 5 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ V |
15 | eleq2 2828 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (𝑁 ∈ 𝑥 ↔ 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) | |
16 | eleq2 2828 | . . . . . . 7 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) | |
17 | 16 | raleqbi1dv 3285 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
18 | 15, 17 | anbi12d 749 | . . . . 5 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → ((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}))) |
19 | 14, 18 | elab 3490 | . . . 4 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
20 | 9, 12, 19 | mpbir2an 993 | . . 3 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
21 | intss1 4644 | . . 3 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) | |
22 | 20, 21 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
23 | 4, 22 | eqssi 3760 | 1 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {cab 2746 ∀wral 3050 {crab 3054 ⊆ wss 3715 ∩ cint 4627 class class class wbr 4804 (class class class)co 6813 1c1 10129 + caddc 10131 ≤ cle 10267 ℤcz 11569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |