Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftrpred4g Structured version   Visualization version   GIF version

Theorem dftrpred4g 32060
 Description: Another recursive expression for the transitive predecessors. (Contributed by Scott Fenton, 27-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
dftrpred4g ((𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)({𝑦} ∪ TrPred(𝑅, 𝐴, 𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋

Proof of Theorem dftrpred4g
StepHypRef Expression
1 dftrpred3g 32059 . 2 ((𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)))
2 iunun 4756 . . 3 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)({𝑦} ∪ TrPred(𝑅, 𝐴, 𝑦)) = ( 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋){𝑦} ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))
3 iunid 4727 . . . 4 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋){𝑦} = Pred(𝑅, 𝐴, 𝑋)
43uneq1i 3906 . . 3 ( 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋){𝑦} ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦)) = (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))
52, 4eqtri 2782 . 2 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)({𝑦} ∪ TrPred(𝑅, 𝐴, 𝑦)) = (Pred(𝑅, 𝐴, 𝑋) ∪ 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)TrPred(𝑅, 𝐴, 𝑦))
61, 5syl6eqr 2812 1 ((𝑋𝐴𝑅 Se 𝐴) → TrPred(𝑅, 𝐴, 𝑋) = 𝑦 ∈ Pred (𝑅, 𝐴, 𝑋)({𝑦} ∪ TrPred(𝑅, 𝐴, 𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ∪ cun 3713  {csn 4321  ∪ ciun 4672   Se wse 5223  Predcpred 5840  TrPredctrpred 32043 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-trpred 32044 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator