Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftr6 Structured version   Visualization version   GIF version

Theorem dftr6 31626
Description: A potential definition of transitivity for sets. (Contributed by Scott Fenton, 18-Mar-2012.)
Hypothesis
Ref Expression
dftr6.1 𝐴 ∈ V
Assertion
Ref Expression
dftr6 (Tr 𝐴𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))

Proof of Theorem dftr6
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr6.1 . . . . 5 𝐴 ∈ V
21elrn 5364 . . . 4 (𝐴 ∈ ran (( E ∘ E ) ∖ E ) ↔ ∃𝑥 𝑥(( E ∘ E ) ∖ E )𝐴)
3 brdif 4703 . . . . . 6 (𝑥(( E ∘ E ) ∖ E )𝐴 ↔ (𝑥( E ∘ E )𝐴 ∧ ¬ 𝑥 E 𝐴))
4 vex 3201 . . . . . . . . 9 𝑥 ∈ V
54, 1brco 5290 . . . . . . . 8 (𝑥( E ∘ E )𝐴 ↔ ∃𝑦(𝑥 E 𝑦𝑦 E 𝐴))
6 epel 5030 . . . . . . . . . 10 (𝑥 E 𝑦𝑥𝑦)
71epelc 5029 . . . . . . . . . 10 (𝑦 E 𝐴𝑦𝐴)
86, 7anbi12i 733 . . . . . . . . 9 ((𝑥 E 𝑦𝑦 E 𝐴) ↔ (𝑥𝑦𝑦𝐴))
98exbii 1773 . . . . . . . 8 (∃𝑦(𝑥 E 𝑦𝑦 E 𝐴) ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
105, 9bitri 264 . . . . . . 7 (𝑥( E ∘ E )𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
111epelc 5029 . . . . . . . 8 (𝑥 E 𝐴𝑥𝐴)
1211notbii 310 . . . . . . 7 𝑥 E 𝐴 ↔ ¬ 𝑥𝐴)
1310, 12anbi12i 733 . . . . . 6 ((𝑥( E ∘ E )𝐴 ∧ ¬ 𝑥 E 𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴))
14 19.41v 1913 . . . . . . 7 (∃𝑦((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴))
15 exanali 1785 . . . . . . 7 (∃𝑦((𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴) ↔ ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
1614, 15bitr3i 266 . . . . . 6 ((∃𝑦(𝑥𝑦𝑦𝐴) ∧ ¬ 𝑥𝐴) ↔ ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
173, 13, 163bitri 286 . . . . 5 (𝑥(( E ∘ E ) ∖ E )𝐴 ↔ ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
1817exbii 1773 . . . 4 (∃𝑥 𝑥(( E ∘ E ) ∖ E )𝐴 ↔ ∃𝑥 ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
19 exnal 1753 . . . 4 (∃𝑥 ¬ ∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ¬ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
202, 18, 193bitri 286 . . 3 (𝐴 ∈ ran (( E ∘ E ) ∖ E ) ↔ ¬ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
2120con2bii 347 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ¬ 𝐴 ∈ ran (( E ∘ E ) ∖ E ))
22 dftr2 4752 . 2 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
23 eldif 3582 . . 3 (𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )) ↔ (𝐴 ∈ V ∧ ¬ 𝐴 ∈ ran (( E ∘ E ) ∖ E )))
241, 23mpbiran 953 . 2 (𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )) ↔ ¬ 𝐴 ∈ ran (( E ∘ E ) ∖ E ))
2521, 22, 243bitr4i 292 1 (Tr 𝐴𝐴 ∈ (V ∖ ran (( E ∘ E ) ∖ E )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1480  wex 1703  wcel 1989  Vcvv 3198  cdif 3569   class class class wbr 4651  Tr wtr 4750   E cep 5026  ran crn 5113  ccom 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pr 4904
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-rab 2920  df-v 3200  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-tr 4751  df-eprel 5027  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123
This theorem is referenced by:  eltrans  31982
  Copyright terms: Public domain W3C validator