MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr3 Structured version   Visualization version   GIF version

Theorem dftr3 4754
Description: An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr3 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem dftr3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dftr5 4753 . 2 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
2 dfss3 3590 . . 3 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
32ralbii 2979 . 2 (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
41, 3bitr4i 267 1 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wcel 1989  wral 2911  wss 3572  Tr wtr 4750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-v 3200  df-in 3579  df-ss 3586  df-uni 4435  df-tr 4751
This theorem is referenced by:  trss  4759  trssOLD  4760  trin  4761  triun  4764  trint  4766  tron  5744  ssorduni  6982  suceloni  7010  dfrecs3  7466  ordtypelem2  8421  tcwf  8743  itunitc  9240  wunex2  9557  wfgru  9635
  Copyright terms: Public domain W3C validator