Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftpos4 Structured version   Visualization version   GIF version

Theorem dftpos4 7416
 Description: Alternate definition of tpos. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
dftpos4 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos4
Dummy variables 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tpos 7397 . . 3 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 relcnv 5538 . . . . . . 7 Rel dom 𝐹
3 df-rel 5150 . . . . . . 7 (Rel dom 𝐹dom 𝐹 ⊆ (V × V))
42, 3mpbi 220 . . . . . 6 dom 𝐹 ⊆ (V × V)
5 unss1 3815 . . . . . 6 (dom 𝐹 ⊆ (V × V) → (dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}))
6 resmpt 5484 . . . . . 6 ((dom 𝐹 ∪ {∅}) ⊆ ((V × V) ∪ {∅}) → ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
74, 5, 6mp2b 10 . . . . 5 ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
8 resss 5457 . . . . 5 ((𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) ↾ (dom 𝐹 ∪ {∅})) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
97, 8eqsstr3i 3669 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})
10 coss2 5311 . . . 4 ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ⊆ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) → (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})))
119, 10ax-mp 5 . . 3 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
121, 11eqsstri 3668 . 2 tpos 𝐹 ⊆ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
13 relco 5671 . . 3 Rel (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
14 vex 3234 . . . . 5 𝑦 ∈ V
15 vex 3234 . . . . 5 𝑧 ∈ V
1614, 15opelco 5326 . . . 4 (⟨𝑦, 𝑧⟩ ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ↔ ∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧))
17 vex 3234 . . . . . . . . 9 𝑤 ∈ V
18 eleq1 2718 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ ((V × V) ∪ {∅}) ↔ 𝑦 ∈ ((V × V) ∪ {∅})))
19 sneq 4220 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2019cnveqd 5330 . . . . . . . . . . . 12 (𝑥 = 𝑦{𝑥} = {𝑦})
2120unieqd 4478 . . . . . . . . . . 11 (𝑥 = 𝑦 {𝑥} = {𝑦})
2221eqeq2d 2661 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑧 = {𝑥} ↔ 𝑧 = {𝑦}))
2318, 22anbi12d 747 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑥}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑦})))
24 eqeq1 2655 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 = {𝑦} ↔ 𝑤 = {𝑦}))
2524anbi2d 740 . . . . . . . . 9 (𝑧 = 𝑤 → ((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑦}) ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦})))
26 df-mpt 4763 . . . . . . . . 9 (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}) = {⟨𝑥, 𝑧⟩ ∣ (𝑥 ∈ ((V × V) ∪ {∅}) ∧ 𝑧 = {𝑥})}
2714, 17, 23, 25, 26brab 5027 . . . . . . . 8 (𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤 ↔ (𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}))
28 simplr 807 . . . . . . . . . . . 12 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 = {𝑦})
2917, 15breldm 5361 . . . . . . . . . . . . 13 (𝑤𝐹𝑧𝑤 ∈ dom 𝐹)
3029adantl 481 . . . . . . . . . . . 12 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤 ∈ dom 𝐹)
3128, 30eqeltrrd 2731 . . . . . . . . . . 11 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → {𝑦} ∈ dom 𝐹)
32 elvv 5211 . . . . . . . . . . . . . 14 (𝑦 ∈ (V × V) ↔ ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
33 opswap 5660 . . . . . . . . . . . . . . . . . 18 {⟨𝑧, 𝑤⟩} = ⟨𝑤, 𝑧
3433eleq1i 2721 . . . . . . . . . . . . . . . . 17 ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑤, 𝑧⟩ ∈ dom 𝐹)
3515, 17opelcnv 5336 . . . . . . . . . . . . . . . . 17 (⟨𝑧, 𝑤⟩ ∈ dom 𝐹 ↔ ⟨𝑤, 𝑧⟩ ∈ dom 𝐹)
3634, 35bitr4i 267 . . . . . . . . . . . . . . . 16 ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹)
37 sneq 4220 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
3837cnveqd 5330 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
3938unieqd 4478 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑧, 𝑤⟩ → {𝑦} = {⟨𝑧, 𝑤⟩})
4039eleq1d 2715 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹 {⟨𝑧, 𝑤⟩} ∈ dom 𝐹))
41 eleq1 2718 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑧, 𝑤⟩ → (𝑦dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹))
4240, 41bibi12d 334 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑧, 𝑤⟩ → (( {𝑦} ∈ dom 𝐹𝑦dom 𝐹) ↔ ( {⟨𝑧, 𝑤⟩} ∈ dom 𝐹 ↔ ⟨𝑧, 𝑤⟩ ∈ dom 𝐹)))
4336, 42mpbiri 248 . . . . . . . . . . . . . . 15 (𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4443exlimivv 1900 . . . . . . . . . . . . . 14 (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4532, 44sylbi 207 . . . . . . . . . . . . 13 (𝑦 ∈ (V × V) → ( {𝑦} ∈ dom 𝐹𝑦dom 𝐹))
4645biimpcd 239 . . . . . . . . . . . 12 ( {𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦dom 𝐹))
47 elun1 3813 . . . . . . . . . . . 12 (𝑦dom 𝐹𝑦 ∈ (dom 𝐹 ∪ {∅}))
4846, 47syl6 35 . . . . . . . . . . 11 ( {𝑦} ∈ dom 𝐹 → (𝑦 ∈ (V × V) → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
4931, 48syl 17 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
50 elun2 3814 . . . . . . . . . . 11 (𝑦 ∈ {∅} → 𝑦 ∈ (dom 𝐹 ∪ {∅}))
5150a1i 11 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ {∅} → 𝑦 ∈ (dom 𝐹 ∪ {∅})))
52 simpll 805 . . . . . . . . . . 11 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ ((V × V) ∪ {∅}))
53 elun 3786 . . . . . . . . . . 11 (𝑦 ∈ ((V × V) ∪ {∅}) ↔ (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅}))
5452, 53sylib 208 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (V × V) ∨ 𝑦 ∈ {∅}))
5549, 51, 54mpjaod 395 . . . . . . . . 9 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑦 ∈ (dom 𝐹 ∪ {∅}))
56 simpr 476 . . . . . . . . . 10 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → 𝑤𝐹𝑧)
5728, 56eqbrtrrd 4709 . . . . . . . . 9 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → {𝑦}𝐹𝑧)
5855, 57jca 553 . . . . . . . 8 (((𝑦 ∈ ((V × V) ∪ {∅}) ∧ 𝑤 = {𝑦}) ∧ 𝑤𝐹𝑧) → (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
5927, 58sylanb 488 . . . . . . 7 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
60 brtpos2 7403 . . . . . . . 8 (𝑧 ∈ V → (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧)))
6115, 60ax-mp 5 . . . . . . 7 (𝑦tpos 𝐹𝑧 ↔ (𝑦 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝑦}𝐹𝑧))
6259, 61sylibr 224 . . . . . 6 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → 𝑦tpos 𝐹𝑧)
63 df-br 4686 . . . . . 6 (𝑦tpos 𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6462, 63sylib 208 . . . . 5 ((𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6564exlimiv 1898 . . . 4 (∃𝑤(𝑦(𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})𝑤𝑤𝐹𝑧) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6616, 65sylbi 207 . . 3 (⟨𝑦, 𝑧⟩ ∈ (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) → ⟨𝑦, 𝑧⟩ ∈ tpos 𝐹)
6713, 66relssi 5245 . 2 (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥})) ⊆ tpos 𝐹
6812, 67eqssi 3652 1 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ((V × V) ∪ {∅}) ↦ {𝑥}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1523  ∃wex 1744   ∈ wcel 2030  Vcvv 3231   ∪ cun 3605   ⊆ wss 3607  ∅c0 3948  {csn 4210  ⟨cop 4216  ∪ cuni 4468   class class class wbr 4685   ↦ cmpt 4762   × cxp 5141  ◡ccnv 5142  dom cdm 5143   ↾ cres 5145   ∘ ccom 5147  Rel wrel 5148  tpos ctpos 7396 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-tpos 7397 This theorem is referenced by:  tposco  7428  nftpos  7432  oftpos  20306
 Copyright terms: Public domain W3C validator