![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dftp2 | Structured version Visualization version GIF version |
Description: Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
dftp2 | ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3352 | . . 3 ⊢ 𝑥 ∈ V | |
2 | 1 | eltp 4365 | . 2 ⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)) |
3 | 2 | abbi2i 2886 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1069 = wceq 1630 {cab 2756 {ctp 4318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-v 3351 df-un 3726 df-sn 4315 df-pr 4317 df-tp 4319 |
This theorem is referenced by: tprot 4418 en3lplem2 8671 tpid3gVD 39593 en3lplem2VD 39595 |
Copyright terms: Public domain | W3C validator |