![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss5OLD | Structured version Visualization version GIF version |
Description: Obsolete as of 22-Jul-2021. (Contributed by David Moews, 1-May-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
dfss5OLD | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐵 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqin2 3960 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | |
2 | eqcom 2767 | . 2 ⊢ ((𝐵 ∩ 𝐴) = 𝐴 ↔ 𝐴 = (𝐵 ∩ 𝐴)) | |
3 | 1, 2 | bitri 264 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐵 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 ∩ cin 3714 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-ss 3729 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |