Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss3f Structured version   Visualization version   GIF version

Theorem dfss3f 3744
 Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
Hypotheses
Ref Expression
dfss2f.1 𝑥𝐴
dfss2f.2 𝑥𝐵
Assertion
Ref Expression
dfss3f (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)

Proof of Theorem dfss3f
StepHypRef Expression
1 dfss2f.1 . . 3 𝑥𝐴
2 dfss2f.2 . . 3 𝑥𝐵
31, 2dfss2f 3743 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
4 df-ral 3066 . 2 (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
53, 4bitr4i 267 1 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1629   ∈ wcel 2145  Ⅎwnfc 2900  ∀wral 3061   ⊆ wss 3723 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-in 3730  df-ss 3737 This theorem is referenced by:  nfss  3745  sigaclcu2  30523  bnj1498  31467  heibor1  33941  ssrabf  39819  ssrab2f  39821  limsupequzmpt2  40468  liminfequzmpt2  40541  pimconstlt1  41435  pimltpnf  41436  pimiooltgt  41441  pimdecfgtioc  41445  pimincfltioc  41446  pimdecfgtioo  41447  pimincfltioo  41448  sssmf  41467
 Copyright terms: Public domain W3C validator