![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss2 | Structured version Visualization version GIF version |
Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
dfss2 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss 3622 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
2 | df-in 3614 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} | |
3 | 2 | eqeq2i 2663 | . . 3 ⊢ (𝐴 = (𝐴 ∩ 𝐵) ↔ 𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)}) |
4 | abeq2 2761 | . . 3 ⊢ (𝐴 = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
5 | 1, 3, 4 | 3bitri 286 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
6 | pm4.71 663 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
7 | 6 | albii 1787 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
8 | 5, 7 | bitr4i 267 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 = wceq 1523 ∈ wcel 2030 {cab 2637 ∩ cin 3606 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-in 3614 df-ss 3621 |
This theorem is referenced by: dfss3 3625 dfss6 3626 dfss2f 3627 ssel 3630 ssriv 3640 ssrdv 3642 sstr2 3643 eqss 3651 nss 3696 rabss2 3718 ssconb 3776 ssequn1 3816 unss 3820 ssin 3868 ssdif0 3975 difin0ss 3979 inssdif0 3980 reldisj 4053 ssundif 4085 sbcssg 4118 pwss 4208 snssg 4347 pwpw0 4376 pwsnALT 4461 ssuni 4491 ssuniOLD 4492 unissb 4501 iunss 4593 dftr2 4787 axpweq 4872 axpow2 4875 ssextss 4952 ssrel 5241 ssrelOLD 5242 ssrel2 5244 ssrelrel 5254 reliun 5272 relop 5305 issref 5544 funimass4 6286 dfom2 7109 inf2 8558 grothpw 9686 grothprim 9694 psslinpr 9891 ltaddpr 9894 isprm2 15442 vdwmc2 15730 acsmapd 17225 dfconn2 21270 iskgen3 21400 metcld 23150 metcld2 23151 isch2 28208 pjnormssi 29155 ssiun3 29502 ssrelf 29553 bnj1361 31025 bnj978 31145 dffr5 31769 brsset 32121 sscoid 32145 relowlpssretop 33342 rp-fakeinunass 38178 rababg 38196 ss2iundf 38268 dfhe3 38386 snhesn 38397 dffrege76 38550 ntrneiiso 38706 ntrneik2 38707 ntrneix2 38708 ntrneikb 38709 conss34OLD 38963 sbcssOLD 39073 onfrALTlem2 39078 trsspwALT 39362 trsspwALT2 39363 snssiALTVD 39376 snssiALT 39377 sstrALT2VD 39383 sstrALT2 39384 sbcssgVD 39433 onfrALTlem2VD 39439 sspwimp 39468 sspwimpVD 39469 sspwimpcf 39470 sspwimpcfVD 39471 sspwimpALT 39475 unisnALT 39476 iunssf 39577 icccncfext 40418 |
Copyright terms: Public domain | W3C validator |