Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsb2 Structured version   Visualization version   GIF version

Theorem dfsb2 2401
 Description: An alternate definition of proper substitution that, like df-sb 1938, mixes free and bound variables to avoid distinct variable requirements. (Contributed by NM, 17-Feb-2005.)
Assertion
Ref Expression
dfsb2 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem dfsb2
StepHypRef Expression
1 sp 2091 . . . 4 (∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
2 sbequ2 1939 . . . . 5 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
32sps 2093 . . . 4 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑𝜑))
4 orc 399 . . . 4 ((𝑥 = 𝑦𝜑) → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
51, 3, 4syl6an 567 . . 3 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑))))
6 sb4 2384 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
7 olc 398 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
86, 7syl6 35 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑))))
95, 8pm2.61i 176 . 2 ([𝑦 / 𝑥]𝜑 → ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
10 sbequ1 2148 . . . 4 (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑))
1110imp 444 . . 3 ((𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
12 sb2 2380 . . 3 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
1311, 12jaoi 393 . 2 (((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)) → [𝑦 / 𝑥]𝜑)
149, 13impbii 199 1 ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦𝜑) ∨ ∀𝑥(𝑥 = 𝑦𝜑)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383  ∀wal 1521  [wsb 1937 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087  ax-13 2282 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1745  df-nf 1750  df-sb 1938 This theorem is referenced by:  dfsb3  2402
 Copyright terms: Public domain W3C validator