![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrtrclrec2 | Structured version Visualization version GIF version |
Description: If two elements are connected by a reflexive, transitive closure, then they are connected via 𝑛 instances the relation, for some 𝑛. (Contributed by Drahflow, 12-Nov-2015.) |
Ref | Expression |
---|---|
rtrclreclem.1 | ⊢ (𝜑 → Rel 𝑅) |
rtrclreclem.2 | ⊢ (𝜑 → 𝑅 ∈ V) |
Ref | Expression |
---|---|
dfrtrclrec2 | ⊢ (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rtrclreclem.2 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | nn0ex 11490 | . . . . 5 ⊢ ℕ0 ∈ V | |
3 | ovex 6841 | . . . . 5 ⊢ (𝑅↑𝑟𝑛) ∈ V | |
4 | 2, 3 | iunex 7312 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
5 | oveq1 6820 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) | |
6 | 5 | iuneq2d 4699 | . . . . 5 ⊢ (𝑟 = 𝑅 → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
7 | eqid 2760 | . . . . 5 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
8 | 6, 7 | fvmptg 6442 | . . . 4 ⊢ ((𝑅 ∈ V ∧ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
9 | 1, 4, 8 | sylancl 697 | . . 3 ⊢ (𝜑 → ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) |
10 | breq 4806 | . . . 4 ⊢ (((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ 𝐴∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)𝐵)) | |
11 | eliun 4676 | . . . . . 6 ⊢ (〈𝐴, 𝐵〉 ∈ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ↔ ∃𝑛 ∈ ℕ0 〈𝐴, 𝐵〉 ∈ (𝑅↑𝑟𝑛)) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ↔ ∃𝑛 ∈ ℕ0 〈𝐴, 𝐵〉 ∈ (𝑅↑𝑟𝑛))) |
13 | df-br 4805 | . . . . 5 ⊢ (𝐴∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)) | |
14 | df-br 4805 | . . . . . 6 ⊢ (𝐴(𝑅↑𝑟𝑛)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑅↑𝑟𝑛)) | |
15 | 14 | rexbii 3179 | . . . . 5 ⊢ (∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵 ↔ ∃𝑛 ∈ ℕ0 〈𝐴, 𝐵〉 ∈ (𝑅↑𝑟𝑛)) |
16 | 12, 13, 15 | 3bitr4g 303 | . . . 4 ⊢ (𝜑 → (𝐴∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
17 | 10, 16 | sylan9bb 738 | . . 3 ⊢ ((((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅) = ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∧ 𝜑) → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
18 | 9, 17 | mpancom 706 | . 2 ⊢ (𝜑 → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
19 | df-rtrclrec 13995 | . . 3 ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
20 | fveq1 6351 | . . . . . 6 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (t*rec‘𝑅) = ((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)) | |
21 | 20 | breqd 4815 | . . . . 5 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → (𝐴(t*rec‘𝑅)𝐵 ↔ 𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵)) |
22 | 21 | bibi1d 332 | . . . 4 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵) ↔ (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵))) |
23 | 22 | imbi2d 329 | . . 3 ⊢ (t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) → ((𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) ↔ (𝜑 → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)))) |
24 | 19, 23 | ax-mp 5 | . 2 ⊢ ((𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) ↔ (𝜑 → (𝐴((𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛))‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵))) |
25 | 18, 24 | mpbir 221 | 1 ⊢ (𝜑 → (𝐴(t*rec‘𝑅)𝐵 ↔ ∃𝑛 ∈ ℕ0 𝐴(𝑅↑𝑟𝑛)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 Vcvv 3340 〈cop 4327 ∪ ciun 4672 class class class wbr 4804 ↦ cmpt 4881 Rel wrel 5271 ‘cfv 6049 (class class class)co 6813 ℕ0cn0 11484 ↑𝑟crelexp 13959 t*reccrtrcl 13994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-i2m1 10196 ax-1ne0 10197 ax-rrecex 10200 ax-cnre 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-nn 11213 df-n0 11485 df-rtrclrec 13995 |
This theorem is referenced by: rtrclreclem3 13999 rtrclind 14004 |
Copyright terms: Public domain | W3C validator |