![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrtrcl4 | Structured version Visualization version GIF version |
Description: Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.) |
Ref | Expression |
---|---|
dfrtrcl4 | ⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrtrcl3 38342 | . 2 ⊢ t* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
2 | df-n0 11331 | . . . . . . 7 ⊢ ℕ0 = (ℕ ∪ {0}) | |
3 | 2 | equncomi 3792 | . . . . . 6 ⊢ ℕ0 = ({0} ∪ ℕ) |
4 | iuneq1 4566 | . . . . . 6 ⊢ (ℕ0 = ({0} ∪ ℕ) → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛)) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛) |
6 | iunxun 4637 | . . . . 5 ⊢ ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛) = (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | |
7 | 5, 6 | eqtri 2673 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
8 | c0ex 10072 | . . . . . . 7 ⊢ 0 ∈ V | |
9 | oveq2 6698 | . . . . . . 7 ⊢ (𝑛 = 0 → (𝑟↑𝑟𝑛) = (𝑟↑𝑟0)) | |
10 | 8, 9 | iunxsn 4635 | . . . . . 6 ⊢ ∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) = (𝑟↑𝑟0) |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) = (𝑟↑𝑟0)) |
12 | oveq1 6697 | . . . . . . . 8 ⊢ (𝑥 = 𝑟 → (𝑥↑𝑟𝑛) = (𝑟↑𝑟𝑛)) | |
13 | 12 | iuneq2d 4579 | . . . . . . 7 ⊢ (𝑥 = 𝑟 → ∪ 𝑛 ∈ ℕ (𝑥↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
14 | dftrcl3 38329 | . . . . . . 7 ⊢ t+ = (𝑥 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑥↑𝑟𝑛)) | |
15 | nnex 11064 | . . . . . . . 8 ⊢ ℕ ∈ V | |
16 | ovex 6718 | . . . . . . . 8 ⊢ (𝑟↑𝑟𝑛) ∈ V | |
17 | 15, 16 | iunex 7189 | . . . . . . 7 ⊢ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) ∈ V |
18 | 13, 14, 17 | fvmpt 6321 | . . . . . 6 ⊢ (𝑟 ∈ V → (t+‘𝑟) = ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
19 | 18 | eqcomd 2657 | . . . . 5 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) = (t+‘𝑟)) |
20 | 11, 19 | uneq12d 3801 | . . . 4 ⊢ (𝑟 ∈ V → (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) = ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
21 | 7, 20 | syl5eq 2697 | . . 3 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
22 | 21 | mpteq2ia 4773 | . 2 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
23 | 1, 22 | eqtri 2673 | 1 ⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 {csn 4210 ∪ ciun 4552 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 0cc0 9974 ℕcn 11058 ℕ0cn0 11330 t+ctcl 13770 t*crtcl 13771 ↑𝑟crelexp 13804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-seq 12842 df-trcl 13772 df-rtrcl 13773 df-relexp 13805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |