![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrex2 | Structured version Visualization version GIF version |
Description: Relationship between restricted universal and existential quantifiers. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Wolf Lammen, 26-Nov-2019.) |
Ref | Expression |
---|---|
dfrex2 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3021 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜑) | |
2 | 1 | con2bii 346 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∀wral 2941 ∃wrex 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-ral 2946 df-rex 2947 |
This theorem is referenced by: rexanali 3027 nfrexd 3035 rexim 3037 r19.23v 3052 r19.30 3111 r19.35 3113 cbvrexf 3196 rspcimedv 3342 sbcrext 3544 sbcrextOLD 3545 cbvrexcsf 3599 rabn0 3991 r19.9rzv 4098 rexxfrd 4911 rexxfr2d 4913 rexxfrd2 4915 rexxfr 4918 rexiunxp 5295 rexxpf 5302 rexrnmpt 6409 cbvexfo 6585 rexrnmpt2 6818 tz7.49 7585 dfsup2 8391 supnub 8409 infnlb 8439 wofib 8491 zfregs2 8647 alephval3 8971 ac6n 9345 prmreclem5 15671 sylow1lem3 18061 ordtrest2lem 21055 trfil2 21738 alexsubALTlem3 21900 alexsubALTlem4 21901 evth 22805 lhop1lem 23821 vdn0conngrumgrv2 27174 nmobndseqi 27762 chpssati 29350 chrelat3 29358 nn0min 29695 xrnarchi 29866 ordtrest2NEWlem 30096 dffr5 31769 nosupbnd1lem4 31982 poimirlem1 33540 poimirlem26 33565 poimirlem27 33566 fdc 33671 lpssat 34618 lssat 34621 lfl1 34675 atlrelat1 34926 unxpwdom3 37982 ss2iundf 38268 zfregs2VD 39390 |
Copyright terms: Public domain | W3C validator |