MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrel4v Structured version   Visualization version   GIF version

Theorem dfrel4v 5734
Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6395 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.)
Assertion
Ref Expression
dfrel4v (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem dfrel4v
StepHypRef Expression
1 dfrel2 5733 . 2 (Rel 𝑅𝑅 = 𝑅)
2 eqcom 2759 . 2 (𝑅 = 𝑅𝑅 = 𝑅)
3 cnvcnv3 5732 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
43eqeq2i 2764 . 2 (𝑅 = 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
51, 2, 43bitri 286 1 (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1624   class class class wbr 4796  {copab 4856  ccnv 5257  Rel wrel 5263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pr 5047
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-rab 3051  df-v 3334  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-br 4797  df-opab 4857  df-xp 5264  df-rel 5265  df-cnv 5266
This theorem is referenced by:  dfrel4  5735  dffn5  6395  fsplit  7442  pwsle  16346  tgphaus  22113  fneer  32646  inxp2  34444  dfxrn2  34453  1cosscnvxrn  34540  dfafn5a  41738  sprsymrelfo  42249
  Copyright terms: Public domain W3C validator