![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrel2 | Structured version Visualization version GIF version |
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5653 | . . 3 ⊢ Rel ◡◡𝑅 | |
2 | vex 3335 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 3335 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opelcnv 5451 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
5 | 3, 2 | opelcnv 5451 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
6 | 4, 5 | bitri 264 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
7 | 6 | eqrelriv 5362 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
8 | 1, 7 | mpan 708 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
9 | releq 5350 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
10 | 1, 9 | mpbii 223 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
11 | 8, 10 | impbii 199 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1624 ∈ wcel 2131 〈cop 4319 ◡ccnv 5257 Rel wrel 5263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-br 4797 df-opab 4857 df-xp 5264 df-rel 5265 df-cnv 5266 |
This theorem is referenced by: dfrel4v 5734 cnvcnv 5736 cnvcnvOLD 5737 cnveqb 5740 dfrel3 5742 cnvcnvres 5748 cnvsng 5767 cnvsnOLD 5771 cores2 5801 co01 5803 coi2 5805 relcnvtr 5808 funcnvres2 6122 f1cnvcnv 6262 f1ocnv 6302 f1ocnvb 6303 f1ococnv1 6318 fimacnvinrn 6503 isores1 6739 relcnvexb 7271 cnvf1o 7436 fnwelem 7452 tposf12 7538 ssenen 8291 cantnffval2 8757 fsumcnv 14695 fprodcnv 14904 structcnvcnv 16065 imasless 16394 oppcinv 16633 cnvps 17405 cnvpsb 17406 cnvtsr 17415 gimcnv 17902 lmimcnv 19261 hmeocnv 21759 hmeocnvb 21771 cmphaushmeo 21797 ustexsym 22212 pi1xfrcnv 23049 dvlog 24588 efopnlem2 24594 gtiso 29779 f1ocan2fv 33827 relcnveq3 34408 relcnveq2 34410 dfrel5 34429 elrelscnveq3 34556 elrelscnveq2 34558 ltrncnvnid 35908 relintab 38383 cnvssb 38386 relnonrel 38387 cononrel1 38394 cononrel2 38395 clrellem 38423 clcnvlem 38424 relexpaddss 38504 |
Copyright terms: Public domain | W3C validator |