Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrefrels2 Structured version   Visualization version   GIF version

Theorem dfrefrels2 34605
 Description: Alternate definition of the class of all reflexive relations. This is a 0-ary class constant, which is recommended for definitions (cf. the 1. Guideline at http://us.metamath.org/ileuni/mathbox.html). Proper classes (like I, cf. iprc 7248) are not elements of this (or any) class: if a class is an element of another class, it is not a proper class but a set, cf. elex 3364. So if we use 0-ary constant classes as our main definitions, they are valid only for sets, not for proper classes. For proper classes we use predicate-type definitions like df-refrel 34604. Cf. the comment of df-rels 34577. Note that while elementhood in the class of all relations cancels restriction of 𝑟 in dfrefrels2 34605, it keeps restriction of I: this is why the very similar definitions df-refs 34602, df-syms 34630 and ~? df-trs diverge when we switch from (general) sets to relations in dfrefrels2 34605, dfsymrels2 34633 and ~? dftrrels2 . (Contributed by Peter Mazsa, 20-Jul-2019.)
Assertion
Ref Expression
dfrefrels2 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}

Proof of Theorem dfrefrels2
StepHypRef Expression
1 df-refrels 34603 . 2 RefRels = ( Refs ∩ Rels )
2 df-refs 34602 . 2 Refs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))}
3 inex1g 4935 . . . . 5 (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V)
43elv 34328 . . . 4 (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V
5 brssr 34593 . . . 4 ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))))
64, 5ax-mp 5 . . 3 (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))
7 elrels6 34582 . . . . . 6 (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟))
87elv 34328 . . . . 5 (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
98biimpi 206 . . . 4 (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)
109sseq2d 3782 . . 3 (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟))
116, 10syl5bb 272 . 2 (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟))
121, 2, 11abeqinbi 34361 1 RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟}
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   = wceq 1631   ∈ wcel 2145  {crab 3065  Vcvv 3351   ∩ cin 3722   ⊆ wss 3723   class class class wbr 4786   I cid 5156   × cxp 5247  dom cdm 5249  ran crn 5250   Rels crels 34317   S cssr 34318   Refs crefs 34319   RefRels crefrels 34320 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-xp 5255  df-rel 5256  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-rels 34577  df-ssr 34590  df-refs 34602  df-refrels 34603 This theorem is referenced by:  dfrefrels3  34606  elrefrels2  34609  refsymrels2  34653
 Copyright terms: Public domain W3C validator