![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrefrels2 | Structured version Visualization version GIF version |
Description: Alternate definition of
the class of all reflexive relations. This is a
0-ary class constant, which is recommended for definitions (cf. the 1.
Guideline at http://us.metamath.org/ileuni/mathbox.html).
Proper
classes (like I, cf. iprc 7248)
are not elements of this (or any)
class: if a class is an element of another class, it is not a proper class
but a set, cf. elex 3364. So if we use 0-ary constant classes as our
main
definitions, they are valid only for sets, not for proper classes. For
proper classes we use predicate-type definitions like df-refrel 34604. Cf.
the comment of df-rels 34577.
Note that while elementhood in the class of all relations cancels restriction of 𝑟 in dfrefrels2 34605, it keeps restriction of I: this is why the very similar definitions df-refs 34602, df-syms 34630 and ~? df-trs diverge when we switch from (general) sets to relations in dfrefrels2 34605, dfsymrels2 34633 and ~? dftrrels2 . (Contributed by Peter Mazsa, 20-Jul-2019.) |
Ref | Expression |
---|---|
dfrefrels2 | ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-refrels 34603 | . 2 ⊢ RefRels = ( Refs ∩ Rels ) | |
2 | df-refs 34602 | . 2 ⊢ Refs = {𝑟 ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟))} | |
3 | inex1g 4935 | . . . . 5 ⊢ (𝑟 ∈ V → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V) | |
4 | 3 | elv 34328 | . . . 4 ⊢ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V |
5 | brssr 34593 | . . . 4 ⊢ ((𝑟 ∩ (dom 𝑟 × ran 𝑟)) ∈ V → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)))) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟))) |
7 | elrels6 34582 | . . . . . 6 ⊢ (𝑟 ∈ V → (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟)) | |
8 | 7 | elv 34328 | . . . . 5 ⊢ (𝑟 ∈ Rels ↔ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
9 | 8 | biimpi 206 | . . . 4 ⊢ (𝑟 ∈ Rels → (𝑟 ∩ (dom 𝑟 × ran 𝑟)) = 𝑟) |
10 | 9 | sseq2d 3782 | . . 3 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)) |
11 | 6, 10 | syl5bb 272 | . 2 ⊢ (𝑟 ∈ Rels → (( I ∩ (dom 𝑟 × ran 𝑟)) S (𝑟 ∩ (dom 𝑟 × ran 𝑟)) ↔ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟)) |
12 | 1, 2, 11 | abeqinbi 34361 | 1 ⊢ RefRels = {𝑟 ∈ Rels ∣ ( I ∩ (dom 𝑟 × ran 𝑟)) ⊆ 𝑟} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1631 ∈ wcel 2145 {crab 3065 Vcvv 3351 ∩ cin 3722 ⊆ wss 3723 class class class wbr 4786 I cid 5156 × cxp 5247 dom cdm 5249 ran crn 5250 Rels crels 34317 S cssr 34318 Refs crefs 34319 RefRels crefrels 34320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-xp 5255 df-rel 5256 df-cnv 5257 df-dm 5259 df-rn 5260 df-res 5261 df-rels 34577 df-ssr 34590 df-refs 34602 df-refrels 34603 |
This theorem is referenced by: dfrefrels3 34606 elrefrels2 34609 refsymrels2 34653 |
Copyright terms: Public domain | W3C validator |