Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrdg4 Structured version   Visualization version   GIF version

Theorem dfrdg4 32412
Description: A quantifier-free definition of the recursive definition generator. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfrdg4 rec(𝐹, 𝐴) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))))

Proof of Theorem dfrdg4
Dummy variables 𝑎 𝑏 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrdg3 32055 . 2 rec(𝐹, 𝐴) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
2 an12 625 . . . . . . . 8 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
3 df-fn 6045 . . . . . . . . . 10 (𝑓 Fn 𝑥 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝑥))
4 ancom 449 . . . . . . . . . 10 ((Fun 𝑓 ∧ dom 𝑓 = 𝑥) ↔ (dom 𝑓 = 𝑥 ∧ Fun 𝑓))
5 eqcom 2781 . . . . . . . . . . 11 (dom 𝑓 = 𝑥𝑥 = dom 𝑓)
65anbi1i 611 . . . . . . . . . 10 ((dom 𝑓 = 𝑥 ∧ Fun 𝑓) ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
73, 4, 63bitri 287 . . . . . . . . 9 (𝑓 Fn 𝑥 ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
87anbi1i 611 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ ((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
9 anass 455 . . . . . . . 8 (((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
102, 8, 93bitri 287 . . . . . . 7 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
1110exbii 1927 . . . . . 6 (∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ ∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
12 vex 3358 . . . . . . . 8 𝑓 ∈ V
1312dmex 7267 . . . . . . 7 dom 𝑓 ∈ V
14 eleq1 2841 . . . . . . . . 9 (𝑥 = dom 𝑓 → (𝑥 ∈ On ↔ dom 𝑓 ∈ On))
15 raleq 3291 . . . . . . . . 9 (𝑥 = dom 𝑓 → (∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
1614, 15anbi12d 617 . . . . . . . 8 (𝑥 = dom 𝑓 → ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
1716anbi2d 615 . . . . . . 7 (𝑥 = dom 𝑓 → ((Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
1813, 17ceqsexv 3399 . . . . . 6 (∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
1911, 18bitri 265 . . . . 5 (∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
20 df-rex 3070 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
21 eldif 3739 . . . . . 6 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ (𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))))
22 elin 3954 . . . . . . . 8 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (𝑓 Funs 𝑓 ∈ (Domain “ On)))
2312elfuns 32376 . . . . . . . . 9 (𝑓 Funs ↔ Fun 𝑓)
2412elima 5622 . . . . . . . . . 10 (𝑓 ∈ (Domain “ On) ↔ ∃𝑥 ∈ On 𝑥Domain𝑓)
25 df-rex 3070 . . . . . . . . . 10 (∃𝑥 ∈ On 𝑥Domain𝑓 ↔ ∃𝑥(𝑥 ∈ On ∧ 𝑥Domain𝑓))
26 ancom 449 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ (𝑥Domain𝑓𝑥 ∈ On))
27 vex 3358 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
2827, 12brcnv 5455 . . . . . . . . . . . . . . 15 (𝑥Domain𝑓𝑓Domain𝑥)
2912, 27brdomain 32394 . . . . . . . . . . . . . . 15 (𝑓Domain𝑥𝑥 = dom 𝑓)
3028, 29bitri 265 . . . . . . . . . . . . . 14 (𝑥Domain𝑓𝑥 = dom 𝑓)
3130anbi1i 611 . . . . . . . . . . . . 13 ((𝑥Domain𝑓𝑥 ∈ On) ↔ (𝑥 = dom 𝑓𝑥 ∈ On))
3226, 31bitri 265 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ (𝑥 = dom 𝑓𝑥 ∈ On))
3332exbii 1927 . . . . . . . . . . 11 (∃𝑥(𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ ∃𝑥(𝑥 = dom 𝑓𝑥 ∈ On))
3413, 14ceqsexv 3399 . . . . . . . . . . 11 (∃𝑥(𝑥 = dom 𝑓𝑥 ∈ On) ↔ dom 𝑓 ∈ On)
3533, 34bitri 265 . . . . . . . . . 10 (∃𝑥(𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ dom 𝑓 ∈ On)
3624, 25, 353bitri 287 . . . . . . . . 9 (𝑓 ∈ (Domain “ On) ↔ dom 𝑓 ∈ On)
3723, 36anbi12i 613 . . . . . . . 8 ((𝑓 Funs 𝑓 ∈ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
3822, 37bitri 265 . . . . . . 7 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
3938anbi1i 611 . . . . . 6 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ ((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))))
40 brdif 4850 . . . . . . . . . . . . . . 15 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ (𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦))
41 vex 3358 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4212, 41brco 5443 . . . . . . . . . . . . . . . . 17 (𝑓( E ∘ Domain)𝑦 ↔ ∃𝑥(𝑓Domain𝑥𝑥 E 𝑦))
4329anbi1i 611 . . . . . . . . . . . . . . . . . . 19 ((𝑓Domain𝑥𝑥 E 𝑦) ↔ (𝑥 = dom 𝑓𝑥 E 𝑦))
4443exbii 1927 . . . . . . . . . . . . . . . . . 18 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ ∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦))
45 breq1 4800 . . . . . . . . . . . . . . . . . . 19 (𝑥 = dom 𝑓 → (𝑥 E 𝑦 ↔ dom 𝑓 E 𝑦))
4613, 45ceqsexv 3399 . . . . . . . . . . . . . . . . . 18 (∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
4744, 46bitri 265 . . . . . . . . . . . . . . . . 17 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
4813, 41brcnv 5455 . . . . . . . . . . . . . . . . . 18 (dom 𝑓 E 𝑦𝑦 E dom 𝑓)
4913epelc 5178 . . . . . . . . . . . . . . . . . 18 (𝑦 E dom 𝑓𝑦 ∈ dom 𝑓)
5048, 49bitri 265 . . . . . . . . . . . . . . . . 17 (dom 𝑓 E 𝑦𝑦 ∈ dom 𝑓)
5142, 47, 503bitri 287 . . . . . . . . . . . . . . . 16 (𝑓( E ∘ Domain)𝑦𝑦 ∈ dom 𝑓)
5251anbi1i 611 . . . . . . . . . . . . . . 15 ((𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦) ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦))
5340, 52bitri 265 . . . . . . . . . . . . . 14 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦))
54 onelon 5902 . . . . . . . . . . . . . . . . . . . . . . . 24 ((dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → 𝑦 ∈ On)
55543adant1 1151 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → 𝑦 ∈ On)
56 brun 4848 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥 ↔ (⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ∨ ⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥))
57 brxp 5299 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ↔ (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ∧ 𝑥 ∈ { {𝐴}}))
58 opelxp 5298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ↔ (𝑓 ∈ V ∧ 𝑦 ∈ {∅}))
5912, 58mpbiran 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ↔ 𝑦 ∈ {∅})
60 velsn 4342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
6159, 60bitri 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ↔ 𝑦 = ∅)
62 velsn 4342 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ { {𝐴}} ↔ 𝑥 = {𝐴})
6361, 62anbi12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ∧ 𝑥 ∈ { {𝐴}}) ↔ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
6457, 63bitri 265 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ↔ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
65 brun 4848 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥 ↔ (⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ∨ ⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥))
6627brres 5555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ↔ (⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥 ∧ ⟨𝑓, 𝑦⟩ ∈ (V × Limits )))
67 opex 5074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑓, 𝑦⟩ ∈ V
6867, 27brco 5443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥 ↔ ∃𝑧(⟨𝑓, 𝑦⟩Img𝑧𝑧 Bigcup 𝑥))
69 vex 3358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑧 ∈ V
7012, 41, 69brimg 32398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⟨𝑓, 𝑦⟩Img𝑧𝑧 = (𝑓𝑦))
7127brbigcup 32359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 Bigcup 𝑥 𝑧 = 𝑥)
7270, 71anbi12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((⟨𝑓, 𝑦⟩Img𝑧𝑧 Bigcup 𝑥) ↔ (𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥))
7372exbii 1927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧(⟨𝑓, 𝑦⟩Img𝑧𝑧 Bigcup 𝑥) ↔ ∃𝑧(𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥))
74 imaexg 7271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑓 ∈ V → (𝑓𝑦) ∈ V)
7512, 74ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓𝑦) ∈ V
76 unieq 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝑓𝑦) → 𝑧 = (𝑓𝑦))
7776eqeq1d 2776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = (𝑓𝑦) → ( 𝑧 = 𝑥 (𝑓𝑦) = 𝑥))
7875, 77ceqsexv 3399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑧(𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥) ↔ (𝑓𝑦) = 𝑥)
79 eqcom 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ( (𝑓𝑦) = 𝑥𝑥 = (𝑓𝑦))
8078, 79bitri 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧(𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥) ↔ 𝑥 = (𝑓𝑦))
8168, 73, 803bitri 287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥𝑥 = (𝑓𝑦))
82 opelxp 5298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ↔ (𝑓 ∈ V ∧ 𝑦 Limits ))
8312, 82mpbiran 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ↔ 𝑦 Limits )
8441ellimits 32371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 Limits ↔ Lim 𝑦)
8583, 84bitri 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ↔ Lim 𝑦)
8681, 85anbi12ci 614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥 ∧ ⟨𝑓, 𝑦⟩ ∈ (V × Limits )) ↔ (Lim 𝑦𝑥 = (𝑓𝑦)))
8766, 86bitri 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ↔ (Lim 𝑦𝑥 = (𝑓𝑦)))
8827brres 5555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥 ↔ (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥 ∧ ⟨𝑓, 𝑦⟩ ∈ (V × ran Succ)))
8967, 27brco 5443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥 ↔ ∃𝑎(⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎FullFun𝐹𝑥))
90 vex 3358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑎 ∈ V
9167, 90brco 5443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎 ↔ ∃𝑧(⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧Apply𝑎))
9212, 41, 69brpprod3a 32347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧 ↔ ∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏))
93 3anrot 1113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏) ↔ (𝑓 I 𝑎𝑦 Bigcup 𝑏𝑧 = ⟨𝑎, 𝑏⟩))
9490ideq 5425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑓 I 𝑎𝑓 = 𝑎)
95 equcom 2106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑓 = 𝑎𝑎 = 𝑓)
9694, 95bitri 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑓 I 𝑎𝑎 = 𝑓)
97 vex 3358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 𝑏 ∈ V
9897brbigcup 32359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑦 Bigcup 𝑏 𝑦 = 𝑏)
99 eqcom 2781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ( 𝑦 = 𝑏𝑏 = 𝑦)
10098, 99bitri 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦 Bigcup 𝑏𝑏 = 𝑦)
101 biid 252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝑎, 𝑏⟩)
10296, 100, 1013anbi123i 1185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓 I 𝑎𝑦 Bigcup 𝑏𝑧 = ⟨𝑎, 𝑏⟩) ↔ (𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩))
10393, 102bitri 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏) ↔ (𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩))
1041032exbii 1928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏) ↔ ∃𝑎𝑏(𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩))
105 vuniex 7122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 𝑦 ∈ V
106 opeq1 4550 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 = 𝑓 → ⟨𝑎, 𝑏⟩ = ⟨𝑓, 𝑏⟩)
107106eqeq2d 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑎 = 𝑓 → (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝑓, 𝑏⟩))
108 opeq2 4551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑏 = 𝑦 → ⟨𝑓, 𝑏⟩ = ⟨𝑓, 𝑦⟩)
109108eqeq2d 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑏 = 𝑦 → (𝑧 = ⟨𝑓, 𝑏⟩ ↔ 𝑧 = ⟨𝑓, 𝑦⟩))
11012, 105, 107, 109ceqsex2v 3402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∃𝑎𝑏(𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩) ↔ 𝑧 = ⟨𝑓, 𝑦⟩)
11192, 104, 1103bitri 287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧 = ⟨𝑓, 𝑦⟩)
112111anbi1i 611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧Apply𝑎) ↔ (𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎))
113112exbii 1927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑧(⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧Apply𝑎) ↔ ∃𝑧(𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎))
114 opex 5074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑓, 𝑦⟩ ∈ V
115 breq1 4800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 = ⟨𝑓, 𝑦⟩ → (𝑧Apply𝑎 ↔ ⟨𝑓, 𝑦⟩Apply𝑎))
116114, 115ceqsexv 3399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (∃𝑧(𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎) ↔ ⟨𝑓, 𝑦⟩Apply𝑎)
11712, 105, 90brapply 32399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (⟨𝑓, 𝑦⟩Apply𝑎𝑎 = (𝑓 𝑦))
118116, 117bitri 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑧(𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎) ↔ 𝑎 = (𝑓 𝑦))
11991, 113, 1183bitri 287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎 = (𝑓 𝑦))
12090, 27brfullfun 32409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑎FullFun𝐹𝑥𝑥 = (𝐹𝑎))
121119, 120anbi12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎FullFun𝐹𝑥) ↔ (𝑎 = (𝑓 𝑦) ∧ 𝑥 = (𝐹𝑎)))
122121exbii 1927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑎(⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎FullFun𝐹𝑥) ↔ ∃𝑎(𝑎 = (𝑓 𝑦) ∧ 𝑥 = (𝐹𝑎)))
123 fvex 6359 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 𝑦) ∈ V
124 fveq2 6348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑎 = (𝑓 𝑦) → (𝐹𝑎) = (𝐹‘(𝑓 𝑦)))
125124eqeq2d 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑎 = (𝑓 𝑦) → (𝑥 = (𝐹𝑎) ↔ 𝑥 = (𝐹‘(𝑓 𝑦))))
126123, 125ceqsexv 3399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑎(𝑎 = (𝑓 𝑦) ∧ 𝑥 = (𝐹𝑎)) ↔ 𝑥 = (𝐹‘(𝑓 𝑦)))
12789, 122, 1263bitri 287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥𝑥 = (𝐹‘(𝑓 𝑦)))
128 opelxp 5298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ↔ (𝑓 ∈ V ∧ 𝑦 ∈ ran Succ))
12912, 128mpbiran 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ↔ 𝑦 ∈ ran Succ)
13041elrn 5516 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ran Succ ↔ ∃𝑧 𝑧Succ𝑦)
13169, 41brsuccf 32402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧Succ𝑦𝑦 = suc 𝑧)
132131exbii 1927 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧 𝑧Succ𝑦 ↔ ∃𝑧 𝑦 = suc 𝑧)
133129, 130, 1323bitri 287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ↔ ∃𝑧 𝑦 = suc 𝑧)
134127, 133anbi12ci 614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥 ∧ ⟨𝑓, 𝑦⟩ ∈ (V × ran Succ)) ↔ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
13588, 134bitri 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥 ↔ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
13687, 135orbi12i 927 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ∨ ⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥) ↔ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
13765, 136bitri 265 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥 ↔ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
13864, 137orbi12i 927 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ∨ ⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥) ↔ ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
13956, 138bitri 265 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥 ↔ ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
140 onzsl 7214 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ On ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ (𝑦 ∈ V ∧ Lim 𝑦)))
141 nlim0 5937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ¬ Lim ∅
142 limeq 5889 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → (Lim 𝑦 ↔ Lim ∅))
143141, 142mtbiri 317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → ¬ Lim 𝑦)
144143intnanrd 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → ¬ (Lim 𝑦𝑥 = (𝑓𝑦)))
145 nsuceq0 5959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 suc 𝑧 ≠ ∅
146 neeq2 3009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = ∅ → (suc 𝑧𝑦 ↔ suc 𝑧 ≠ ∅))
147145, 146mpbiri 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = ∅ → suc 𝑧𝑦)
148147necomd 3001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = ∅ → 𝑦 ≠ suc 𝑧)
149148neneqd 2951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → ¬ 𝑦 = suc 𝑧)
150149nexdv 2019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → ¬ ∃𝑧 𝑦 = suc 𝑧)
151150intnanrd 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → ¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
152 ioran 995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) ↔ (¬ (Lim 𝑦𝑥 = (𝑓𝑦)) ∧ ¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
153144, 151, 152sylanbrc 573 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ∅ → ¬ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
154 orel2 904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → (𝑦 = ∅ ∧ 𝑥 = {𝐴})))
155153, 154syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ∅ → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → (𝑦 = ∅ ∧ 𝑥 = {𝐴})))
156 iftrue 4241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(𝐴 ∈ V, 𝐴, ∅))
157 unisnif 32386 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 {𝐴} = if(𝐴 ∈ V, 𝐴, ∅)
158156, 157syl6eqr 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = {𝐴})
159158eqeq2d 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ 𝑥 = {𝐴}))
160159biimprd 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ∅ → (𝑥 = {𝐴} → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
161160adantld 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ∅ → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
162155, 161syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ∅ → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
163159biimpd 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → 𝑥 = {𝐴}))
164163anc2li 546 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → (𝑦 = ∅ ∧ 𝑥 = {𝐴})))
165 orc 883 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
166164, 165syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
167162, 166impbid 203 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = ∅ → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
168 neeq1 3008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = suc 𝑧 → (𝑦 ≠ ∅ ↔ suc 𝑧 ≠ ∅))
169145, 168mpbiri 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = suc 𝑧𝑦 ≠ ∅)
170169neneqd 2951 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = suc 𝑧 → ¬ 𝑦 = ∅)
171170intnanrd 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = suc 𝑧 → ¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
172171rexlimivw 3181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
173 orel1 902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
174172, 173syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
175 nlimsucg 7210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ V → ¬ Lim suc 𝑧)
17669, 175ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ¬ Lim suc 𝑧
177 limeq 5889 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = suc 𝑧 → (Lim 𝑦 ↔ Lim suc 𝑧))
178176, 177mtbiri 317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = suc 𝑧 → ¬ Lim 𝑦)
179178rexlimivw 3181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ Lim 𝑦)
180179intnanrd 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ (Lim 𝑦𝑥 = (𝑓𝑦)))
181 orel1 902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ (Lim 𝑦𝑥 = (𝑓𝑦)) → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
182180, 181syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
183145neii 2948 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ¬ suc 𝑧 = ∅
184183iffalsei 4245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 if(suc 𝑧 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))
185 iffalse 4244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ Lim suc 𝑧 → if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧)))
18669, 175, 185mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧))
187184, 186eqtri 2796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 if(suc 𝑧 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = (𝐹‘(𝑓 suc 𝑧))
188 eqeq1 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = suc 𝑧 → (𝑦 = ∅ ↔ suc 𝑧 = ∅))
189 unieq 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = suc 𝑧 𝑦 = suc 𝑧)
190189fveq2d 6352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 = suc 𝑧 → (𝑓 𝑦) = (𝑓 suc 𝑧))
191190fveq2d 6352 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = suc 𝑧 → (𝐹‘(𝑓 𝑦)) = (𝐹‘(𝑓 suc 𝑧)))
192177, 191ifbieq2d 4260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = suc 𝑧 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))))
193188, 192ifbieq2d 4260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = suc 𝑧 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(suc 𝑧 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))))
194187, 193, 1913eqtr4a 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = suc 𝑧 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = (𝐹‘(𝑓 𝑦)))
195194rexlimivw 3181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = (𝐹‘(𝑓 𝑦)))
196195eqeq2d 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ 𝑥 = (𝐹‘(𝑓 𝑦))))
197196biimprd 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = (𝐹‘(𝑓 𝑦)) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
198197adantld 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ((∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
199174, 182, 1983syld 60 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
200 rexex 3153 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ∃𝑧 𝑦 = suc 𝑧)
201196biimpd 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → 𝑥 = (𝐹‘(𝑓 𝑦))))
202 olc 884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
203202olcd 890 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
204200, 201, 203syl6an 664 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
205199, 204impbid 203 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
206143con2i 136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 → ¬ 𝑦 = ∅)
207206intnanrd 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → ¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
208207, 173syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
209178exlimiv 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑧 𝑦 = suc 𝑧 → ¬ Lim 𝑦)
210209con2i 136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 → ¬ ∃𝑧 𝑦 = suc 𝑧)
211210intnanrd 478 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → ¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
212 orel2 904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (Lim 𝑦𝑥 = (𝑓𝑦))))
213211, 212syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (Lim 𝑦𝑥 = (𝑓𝑦))))
214206iffalsed 4246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (Lim 𝑦 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))
215 iftrue 4241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (Lim 𝑦 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = (𝑓𝑦))
216214, 215eqtrd 2808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (Lim 𝑦 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = (𝑓𝑦))
217216eqeq2d 2784 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ 𝑥 = (𝑓𝑦)))
218217biimprd 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → (𝑥 = (𝑓𝑦) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
219218adantld 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → ((Lim 𝑦𝑥 = (𝑓𝑦)) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
220208, 213, 2193syld 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Lim 𝑦 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
221220adantl 468 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ V ∧ Lim 𝑦) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
222217biimpd 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → 𝑥 = (𝑓𝑦)))
223222anc2li 546 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → (Lim 𝑦𝑥 = (𝑓𝑦))))
224 orc 883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((Lim 𝑦𝑥 = (𝑓𝑦)) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
225224olcd 890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Lim 𝑦𝑥 = (𝑓𝑦)) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
226223, 225syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
227226adantl 468 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ V ∧ Lim 𝑦) → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
228221, 227impbid 203 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ V ∧ Lim 𝑦) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
229167, 205, 2283jaoi 1542 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ (𝑦 ∈ V ∧ Lim 𝑦)) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
230140, 229sylbi 208 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
231139, 230syl5bb 273 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ On → (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
23255, 231syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
23327, 67brcnv 5455 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ ⟨𝑓, 𝑦⟩Apply𝑥)
23412, 41, 27brapply 32399 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑓, 𝑦⟩Apply𝑥𝑥 = (𝑓𝑦))
235233, 234bitri 265 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ 𝑥 = (𝑓𝑦))
236235a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (𝑥Apply⟨𝑓, 𝑦⟩ ↔ 𝑥 = (𝑓𝑦)))
237232, 236anbi12d 617 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → ((⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ∧ 𝑥 = (𝑓𝑦))))
238 ancom 449 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ∧ 𝑥 = (𝑓𝑦)) ↔ (𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
239237, 238syl6bb 277 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → ((⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
240239exbidv 2005 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (∃𝑥(⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
241 df-br 4798 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))
24267elfix 32364 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))) ↔ ⟨𝑓, 𝑦⟩(Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))⟨𝑓, 𝑦⟩)
24367, 67brco 5443 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑓, 𝑦⟩(Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))⟨𝑓, 𝑦⟩ ↔ ∃𝑥(⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩))
244241, 242, 2433bitri 287 . . . . . . . . . . . . . . . . . . 19 (𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ∃𝑥(⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩))
245 fvex 6359 . . . . . . . . . . . . . . . . . . . 20 (𝑓𝑦) ∈ V
246245eqvinc 3486 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
247240, 244, 2463bitr4g 304 . . . . . . . . . . . . . . . . . 18 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
248247notbid 308 . . . . . . . . . . . . . . . . 17 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
2492483expia 1141 . . . . . . . . . . . . . . . 16 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (𝑦 ∈ dom 𝑓 → (¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
250249pm5.32d 567 . . . . . . . . . . . . . . 15 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → ((𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦) ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
251 annim 391 . . . . . . . . . . . . . . 15 ((𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
252250, 251syl6bb 277 . . . . . . . . . . . . . 14 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → ((𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦) ↔ ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
25353, 252syl5bb 273 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
254253exbidv 2005 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ ∃𝑦 ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
255 exnal 1905 . . . . . . . . . . . 12 (∃𝑦 ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ¬ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
256254, 255syl6rbb 278 . . . . . . . . . . 11 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦))
25712eldm 5471 . . . . . . . . . . 11 (𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))) ↔ ∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦)
258256, 257syl6bbr 279 . . . . . . . . . 10 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))))
259258con1bid 345 . . . . . . . . 9 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))) ↔ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
260 df-ral 3069 . . . . . . . . 9 (∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
261259, 260syl6bbr 279 . . . . . . . 8 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
262261pm5.32i 565 . . . . . . 7 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ ((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
263 anass 455 . . . . . . 7 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
264262, 263bitri 265 . . . . . 6 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
26521, 39, 2643bitri 287 . . . . 5 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
26619, 20, 2653bitr4ri 294 . . . 4 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
267266abbi2i 2890 . . 3 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
268267unieqi 4594 . 2 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
2691, 268eqtr4i 2799 1 rec(𝐹, 𝐴) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 383  wo 863  w3o 1097  w3a 1098  wal 1632   = wceq 1634  wex 1855  wcel 2148  {cab 2760  wne 2946  wral 3064  wrex 3065  Vcvv 3355  cdif 3726  cun 3727  cin 3728  c0 4073  ifcif 4235  {csn 4326  cop 4332   cuni 4585   class class class wbr 4797   I cid 5170   E cep 5175   × cxp 5261  ccnv 5262  dom cdm 5263  ran crn 5264  cres 5265  cima 5266  ccom 5267  Oncon0 5877  Lim wlim 5878  suc csuc 5879  Fun wfun 6036   Fn wfn 6037  cfv 6042  reccrdg 7679  pprodcpprod 32292   Bigcup cbigcup 32295   Fix cfix 32296   Limits climits 32297   Funs cfuns 32298  Imgcimg 32303  Domaincdomain 32304  Applycapply 32306  Succcsuccf 32309  FullFuncfullfn 32311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-symdif 4001  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-om 7234  df-1st 7336  df-2nd 7337  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-txp 32315  df-pprod 32316  df-bigcup 32319  df-fix 32320  df-limits 32321  df-funs 32322  df-singleton 32323  df-singles 32324  df-image 32325  df-cart 32326  df-img 32327  df-domain 32328  df-cup 32330  df-succf 32333  df-apply 32334  df-funpart 32335  df-fullfun 32336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator