Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrab3 Structured version   Visualization version   GIF version

Theorem dfrab3 3935
 Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfrab3 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfrab3
StepHypRef Expression
1 df-rab 2950 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 inab 3928 . 2 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = {𝑥 ∣ (𝑥𝐴𝜑)}
3 abid2 2774 . . 3 {𝑥𝑥𝐴} = 𝐴
43ineq1i 3843 . 2 ({𝑥𝑥𝐴} ∩ {𝑥𝜑}) = (𝐴 ∩ {𝑥𝜑})
51, 2, 43eqtr2i 2679 1 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {cab 2637  {crab 2945   ∩ cin 3606 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-in 3614 This theorem is referenced by:  dfrab2  3936  notrab  3937  dfrab3ss  3938  dfif3  4133  dffr3  5533  dfse2  5534  tz6.26  5749  rabfi  8226  dfsup2  8391  ressmplbas2  19503  clsocv  23095  hasheuni  30275  bj-inrab3  33050  hashnzfz  38836
 Copyright terms: Public domain W3C validator